SAND2010-2183
Unlimited Release
December 2009
Updated January 21, 2011

DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis

Version 5.1 User’s Manual

Brian M. Adams, Keith R. Dalbey, Michael S. Eldred, David M. Gay, Laura P. Swiler
Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Karen Haskell
Scientific Applications and User Support Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185

Patricia D. Hough, Sophia Lefantzi
Quantitative Modeling and Analysis Department

Sandia National Laboratories
P.O. Box 969
Livermore, CA 94551

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability,
and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flex-
ible and extensible problem-solving environment for design and performance analysis of computational models
on high performance computers.

This report serves as a user’s manual for the DAKOTA software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Contents

Preface

1 Introduction

1.1
1.2
1.3
1.4

1.5

Motivation for DAKOTA Development
Capabilities of DAKOTA e e
How Does DAKOTA Work?
Background and Mathematical Formulations
141 Optimization i e e e e e
1.4.2 Nonlinear Least Squares for Parameter Estimation
1.4.3 Sensitivity Analysis and Parameter Studies L.
1.44 Designof Experiments
1.4.5 Uncertainty Quantification Lo e

Using this Manual 0 e e e

2 DAKOTA Tutorial

2.1

2.2
23
24

Installation Guide
2.1.1 How to Obtain DAKOTA - External to SandiaLabs
2.1.2 How to Obtain DAKOTA - Internal to SandiaLabs
2.1.3 Installing DAKOTA - Binary Executable Files
2.14 Installing DAKOTA - Source Code Files
2.1.5 Running DAKOTA e e
Rosenbrock and Textbook Test Problems
DAKOTA Input File Format e
Example Problems
24.1 Parameter Studies e

24.1.1 Two-Dimensional Grid Parameter Study

17

19
19
20
20
21
21
23
23
24
25
25

CONTENTS

2.4.1.2 Vector Parameter Study 35

242 Optimization e e e e e 36
2.4.2.1 Gradient-based Unconstrained Optimization 38

2.4.2.2 Gradient-based Constrained Optimization 38

2.4.2.3 Nonlinear Least Squares Methods for Optimization 41

2.4.24 Nongradient-based Optimization via Pattern Search 44

2.4.2.,5 Nongradient-based Optimization via Evolutionary Algorithm 46

2.4.2.6 Multiobjective Optimization 48

2.4.3 Uncertainty Quantification oL o 51
24.3.1 Monte Carlo Sampling e 52

2.4.3.2 Reliability Methods - via the Mean Value Method 53

2433 Polynomial Chaos e 55

2434 Interval Analysis 58

2.4.4 User Supplied Simulation Code Examples 58
2.4.4.1 Optimization with a User-Supplied Simulation Code - Case 1 61

2.44.2 Optimization with a User-Supplied Simulation Code - Case2 63

25 WheretoGofromHere 63
DAKOTA Capability Overview 65
3.1 Purpose ... oL e 65
3.2 Parameter Study Methods e e 65
3.3 Design of Experiments e e e e 65
3.4 Uncertainty Quantification L. e e e e e e 66
3.5 Optimizationo e e e e e 68
3.6 Additional Optimization Capabilities e 70
3.7 Nonlinear Least Squares for Parameter Estimation 71
3.8 Surrogate-Based Minimization e e e 71
3.9 Optimization Strate@ies o v i e e e e e e e e e 72
3.10 Surrogate Models L e 72
3.11 Nested Models 74
3.12 Parallel Computing e e 75
313 Summary ... e e e e e e e 75
Parameter Study Capabilities 77
41 OVEIVIEW . . . L it e e e e e e e e 77

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS 7

4.1.1 Initial Values 78
4.1.2 Bounds e e e 78

4.2 Vector Parameter Study e e e 78
4.3 ListParameter Study 80
4.4 Centered Parameter Study e 80
4.5 Multidimensional Parameter Study 82
5 Design of Experiments Capabilities 85
5.1 OVerviewo e e e e e 85
5.2 Design of Computer Experiments o 85
5.3 DDACE Background e 87
5.3.1 Central Composite Design e e 87

5.3.2 Box-Behnken Design L 88

5.3.3 Orthogonal Array Designs e e e 88

534 GridDesign e e 89

5.35 Monte CarloDesign e 90

53.6 LHSDesign. i e 90

5.3.7 OA-LHS Design e e e 90

54 FSUDace Background e 90
5.5 PSUADE MOAT Background e 91
5.6 Sensitivity Analysis e e e e e e e e e e 92
6 Uncertainty Quantification Capabilities 95
6.1 OVerview e e e e e e e 95
6.2 Sampling Methods e e e 95
6.2.1 Uncertainty Quantification Example using Sampling Methods 97

6.2.2 Incremental Sampling e e 102

6.3 Reliability Methods e 103
6.3.1 Mean Value 103

6.3.2 MPP Search Methods 106
6.3.2.1 Limit state approximationso 107

6.3.2.2 Probability integrationso 109

6.3.2.3 Methodmapping 109

6.3.3 Global Reliability Methods 110

6.3.4 Uncertainty Quantification Example using Reliability Analysis 111

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS

6.4 Stochastic Expansion Methods e 112
6.4.1 Orthogonal polynomials in the Askey scheme 117

6.4.2 Numerically generated orthogonal polynomials 117

6.4.3 Interpolation polynomials L 118

6.4.4 Generalized Polynomial Chaos 118
6.4.4.1 Expansion truncation and tailoring 119

6.4.5 Stochastic Collocation e 120

6.4.6 Transformations to uncorrelated standard variables 120

6.4.7 Spectral projection L. L e e e e e e e e 121
6.4.7.1 Sampling 122

6.4.7.2 Tensor product quadrature 122

6.4.7.3 Smolyak sparse grids oL 123

6474 Cubature 125

6.4.8 Linear re@resSion i i e e e e e e e e e e e e e e e e 125

6.4.9 Analyticmoments 126
6.4.10 Local sensitivity analysis: derivatives with respect to expansion variables 126
6.4.11 Global sensitivity analysis: variance-based decomposition 127
6.4.12 Automated Refinement L 128
6.4.12.1 Uniform p-refinement with isotropic grids 128

6.4.12.2 Adaptive p-refinement with anisotropic grids 128

6.4.12.3 Goal-oriented p-refinement with generalized sparse grids 128

6.4.13 Uncertainty Quantification Example using Stochastic Collocation 129

6.5 Epistemic Nondeterministic Methods oo 131
6.5.1 Interval Methods for Epistemic Analysis 131

6.5.2 Dempster-Shafer Theory of Evidence 133

6.6 Future Nondeterministic Methods L 137
Optimization Capabilities 139
T OVeIVIEW . . . o o o e e e 139
7.2 Optimization Software Packages e 140
7.2.1 HOPSPACK Library e e e e e 140

7.22 COLINY Library 140

7.2.3 Constrained Minimization (CONMIN) Library 141

7.2.4 Design Optimization Tools (DOT) Library 142

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS 9
7.2.5 dl_solver — Solvers via Shared Libraries 142

7.2.6 JEGA . . . o 142

7.277 NCSUDIRECT e e e e s 143

7.2.8 NLPQLLibrary e e 143

7.2.9 NPSOL Library o o e e e e e 144

7.2.10 OPTH+Library o oo o e e e e e 144

7.2.11 Parallel Integer Combinatorial Optimization (PICO) 145

7.2.12 SGOPT e 145

7.3 Additional Optimization Capabilities e 145
7.3.1 Multiobjective Optimization i e e 145

7.3.2 Optimization with User-specified or Automatic Scaling 149

8 Nonlinear Least Squares Capabilities 153
.1 OVEIVIEW e e e 153

8.2 Solution Techniques i i e e e e e e e e e e 154
8.2.1 Gauss-Newton o it 154

8.2.2 NLSSOL 154

8.2.3 NL2SOL 155

8.2.4 Additional Features and Future plans 155

8.3 Examples e e e e 155

9 Surrogate-Based Minimization 157
0.1 OVErVIeW o o e e e e e e 157
9.2 Surrogate-Based Local Minimization e e 157
9.2.1 Tterate acceptance logic 159

9.2.2 Meritfunctions e 160

9.2.3 Convergence assesSMeNtt et e e e e 161

9.24 Constraintrelaxation o e e 161

925 SBOwithDataFits e 163

9.2.6 SBO with Multifidelity Models 164

9.2.7 SBO with Reduced Order Models 166

9.3 Surrogate-Based Global Minimization oo 167
9.4 Efficient Global Minimization e 168

10 Advanced Strategies 171

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

10 CONTENTS
10.1 OVerview o o e e e e 171
10.2 Hybrid Minimization 171
10.3 Multistart Local Minimization e 172
10.4 Pareto Optimization o o o e e e e e e e e 174
10.5 Mixed Integer Nonlinear Programming (MINLP) 175

10.5.1 Example MINLP Problem e 177

11 Models 179
TLL OVeIrVIEW o o o e s e e e e e 179
11.2 Single Models e e e e e 180
11.3 Recast Models e e e 180
11.4 Surrogate Models L 180

11.4.1 Data Fit Surrogate Models e 181
11.4.1.1 Procedures for Surface Fitting 182
11.4.1.2 Taylor Series v o v i i e e e e e e e e e 182
11.4.1.3 Two Point Adaptive Nonlinearity Approximation. 182
11.4.1.4 Linear, Quadratic, and Cubic Polynomial Models 183
11.4.1.5 Kriging Spatial Interpolation Models 184
11.4.1.6 Artificial Neural Network (ANN)Models 186
11.4.1.7 Multivariate Adaptive Regression Spline (MARS) Models 186
11.4.1.8 Radial Basis Functions 187
11.4.1.9 Moving Least Squares e 187

11.4.2 Multifidelity Surrogate Models L 187

11.4.3 Reduced Order Models o 188

11.5 Nested Models e e 188
11.6 Advanced Examples L e 188

11.6.1 Interval-valued probability 188

11.6.2 Optimization Under Uncertainty (OUU) 189
11.6.2.1 Nested OUU s e 191
11.6.2.2 Surrogate-Based OUU (SBOUU) 192
11.6.2.3 Trust-Region Surrogate-Based OUU (TR-SBOUU) 192
11.6.2.4 Bi-level RBDO e 194
11.6.2.5 Sequential/Surrogate-based RBDO 196
11.6.2.6 Stochastic Expansion-Based Design Optimization 197

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS 11

11.6.2.7 EpistemicOUU et 201

11.6.3 Surrogate-Based Uncertainty Quantification 201

12 Variables 203
121 OVerview o o e e e e 203
12.2 Design Variables 203
12.2.1 Continuous Design Variables 203
12.2.2 Discrete Design Variables 204
12.2.2.1 Discrete Design Integer Variables 204

12.2.2.2 Discrete Design Real Variables 204

12.3 Uncertain Variables L e e 205
12.3.1 Aleatory Uncertain Variables 205
12.3.1.1 Continuous Aleatory Uncertain Variables 205

12.3.1.2 Discrete Aleatory Uncertain Variables 206

12.3.2 Epistemic Uncertain Variables 206
12.3.2.1 Continuous Epistemic Uncertain Variables 207

12.4 State Variables L e 207
12.5 Mixed Variables 207
12.6 DAKOTA Parameters File Data Format 208
12.6.1 Parameters file format (standard) 208
12.6.2 Parameters file format (APREPRO) 209

12.7 The Active Set Vector o . i e e e e 210
12.7.1 Active set vector control L. e 211

13 Interfaces 213
13.1 OVeIVIEW o o e e e 213
13.2 Algebraic Mappings o v i e e e e e e e e e e 213
13.3 Simulation Interfaces 216
13.3.1 The Direct Function Simulation Interface 216
13.3.2 The System Call Simulation Interface, 217
13.3.3 The Fork Simulation Interface 217
13.3.4 Syntax for Filter and Driver Strings 218
13.3.5 Fork or System Call: WhichtoUse? 218

13.4 Simulation Interface Components o e e e e 219
13.4.1 Single analysis driver without filters 219

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

12 CONTENTS
13.4.2 Single analysis driver withfilters o 221
13.4.3 Multiple analysis drivers without filters 222
13.4.4 Multiple analysis drivers with filters oL, 222

13.5 Simulation File Management 223
13.5.1 FileSaving e e e 224
13.5.2 File Tagging for Evaluations 224
13.5.3 Temporary Files e 225
13.5.4 File Tagging for Analysis Drivers 225
13.5.5 Work Directories o o e e e e 226

13.6 Parameter to Response Mappings o i i e e e e e e 227

14 Responses 233

T4.1 OVEIVIEW o oo e e e e e e e e 233
14.1.1 Response function types o v v v v i i i e e e e e e 233
14.1.2 Gradient availability 234
14.1.3 Hessian availability e 234

14.2 DAKOTA Results File Data Format 234

14.3 Active Variables for Derivatives L e 235

15 Inputs to DAKOTA 237

15.1 Overview of Inputs e 237

152 JAGUAR 2.0 . . . 237
15.2.1 Downloading and Installing JAGUAR 237
15.2.2 Running JAGUAR for the First Time, 238
1523 TextEditors o e 241
15.2.4 Graphical Editors 241
15.2.5 DAKOTA Execution oo ittt et e e e et 244
15.2.6 Sensitivity Analysis Wizard 249
15.2.7 Generating Input Files from Templates 251

153 Datalmports e e e 253
15.3.1 AMPL algebraic mappings: stub.nl, stub.row, and stub.col 254
15.3.2 Genetic algorithm populationimport oL 254
1533 Leastsquaresdataimport.o 254
15.3.4 PCE coefficientimport e e 254
15.3.5 Surrogate construction from datafiles L. 254

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS

13

15.3.6 Variables/responses import to post-run

16 Output from DAKOTA
16.1 Overview of Output Formats
16.2 StandardOutput
16.3 Tabular OutputData.
16.4 GraphicsOutput
16.5 Error Messages Output

16.6 Variables Output from Pre-run

17 Advanced Simulation Code Interfaces

17.1 Building an Interface to a Engineering SimulationCode

17.1.1 Generic Script Interface Files

17.1.2 Adapting These Scripts to Another Simulation

17.1.3 Additional Examples
17.2 Developing a Direct Simulation Interface . .
17.2.1 Extension
17.2.2 Derivation.
1723 Sandwich

17.3 Existing Direct Interfaces to External Simulators

173.1 Matlab

17.3.1.1 DAKOTA/Matlab input file specification

17.3.1.2 Matlab .m file specification

18 Parallel Computing

18.1 Overview
18.1.1 Categorization of parallelism

18.1.2 Parallel DAKOTA algorithms

18.1.2.1 Parallel iterators

18.1.2.2 Parallel strategies

18.1.2.3 Parallel models

18.2 Single-level parallelism

18.2.1 Asynchronous Local Parallelism . . .

18.2.1.1 Direct function synchronization

18.2.1.2 System call synchronization

254

255
255
255
261
261
263
263

265
265
265
272
273
273
273
274
274
274
275
275
275

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS

18.2.1.3 Fork synchronization 285

18.2.1.4 Asynchronous Local Example 286

18.2.1.5 Local evaluation scheduling options 288

18.2.2 Message Passing Parallelism L oo 288
18.2.2.1 Partitioning 288

18222 Scheduling 289

18.2.2.3 Message Passing Example 0oL 290

18.2.3 Hybrid Parallelism 291
18.2.3.1 Hybrid Example e 292

18.3 Multilevel parallelism L e 294
18.3.1 Asynchronous Local Parallelism 295
18.3.2 Message Passing Parallelismo o 295
18.3.2.1 Partitioningof levels 295

18.3.2.2 Scheduling withinlevels 296

18.3.3 Hybrid Parallelism e 296

18.4 Capability Summary e 297
18.5 Running a Parallel DAKOTA Job e 297
18.5.1 Single-processor eXecution i e e e e 298
18.5.2 Multiprocessor eXeCution L L e e e e e 298

18.6 Specifying Parallelism e e 299
18.6.1 The interface specification e 299
18.6.2 The strategy specification L o 300
18.6.3 Single-processor DAKOTA specification 300
18.6.3.1 Example 1 e e 300

18.6.3.2 Example2 e e 301

18.6.4 Multiprocessor DAKOTA specification 302
18.6.4.1 Example3 302

18.6.4.2 Exampled e 304

18.6.43 Example5 e 306

18.7 Application Parallelism Use Cases i ittt 307
18.7.1 Case 1: Multiple serial analysisjobs 307
18.7.2 Case 2: One simultaneous parallel analysisjob 308
18.7.3 Case 3: Multiple simultaneous parallel analysisjobs 309
18.7.3.1 Mpiexecservermodel 309

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CONTENTS 15
18.7.3.2 Relative node scheduling, 309

18.7.3.3 Machinefile management oL 309

18.7.4 Case 4: Parallel analysis jobs submittedtoaqueue 310

19 DAKOTA Usage Guidelines 311
19.1 Problem Exploration e 311
19.2 Optimization Method Selection L 311
19.3 UQ Method Selection e e e e e e e e e 313
19.4 Parameter Study/DOE/DACE/Sampling Method Selection 316

20 Restart Capabilities and Utilities 317
20.1 Restart Management e e e e e 317
20.2 The DAKOTA Restart Utility ettt 318
20.2.1 Print.o e 319

20.2.2 To/From Neutral File Format 319

20.2.3 ToTabular Format e 320

20.2.4 Concatenation of Multiple Restart Files 321

20.2.5 Removal of Corrupted Data L 321

21 Simulation Failure Capturing 323
21.1 Failure detection L e e e e e e e e e e 323
21.2 Failure communication oL e e e e 324
21.3 Failure mitigation L. e e e e e 324
21.3.1 Abort(default) e 324

21.3.2 Retry . . . o e e e e e 324

21.3.3 RECOVET o o o e 324

21.3.4 ContinUation v ot e e e e e e e e 325

21.4 Special values 325

22 Additional Examples 327
22.1 Textbook Example e 327
22.1.1 Methods L e 328

22.1.2 Optimization Results 328

22.1.3 LeastSquaresResults 329

22.2 Rosenbrock Example L e 329

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

16 CONTENTS
22.2.1 Methods 330
2222 Results oL e e 331

22.3 Cylinder Head Example e e 334
22.3.1 Methods e 334
22.3.2 Optimization Results 335

22.4 Container Example L e 336

225 LogRatioExample 339

22.6 Steel Section Example L 339

22.7 Portal Frame Example e 340

22.8 Short Column Example e e e e 340
22.8.1 Uncertainty Quantification 341
22.8.2 Reliability-Based Design Optimization oo v v v v oo .. 341

229 Cantilever Example L e e 342
22.9.1 Deterministic Optimization Results 0., 343
22.9.2 Stochastic Optimization Results 344

22.10Steel Column Example e 344

22.11Multiobjective Examples L e e e e 345
22.11.1 Multiobjective Test Problem 1 345
22.11.2 Multiobjective Test Problem 2 L 346
22.11.3 Multiobjective Test Problem 3 346

22.12Morrisexample L e e e e 351

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994 as an
internal research and development activity at Sandia National Laboratories in Albuquerque, New Mexico. The
original goal of this effort was to provide a common set of optimization tools for a group of engineers who were
solving structural analysis and design problems. Prior to the start of the DAKOTA project, there was not a focused
effort to archive the optimization methods for reuse on other projects. Thus, for each new project the engineers
found themselves custom building new interfaces between the engineering analysis software and the optimization
software. This was a particular burden when attempts were made to use parallel computing resources, where
each project required the development of a unique master program that coordinated concurrent simulations on a
network of workstations or a parallel computer. The initial DAKOTA toolkit provided the engineering and analysis
community at Sandia Labs with access to a variety of different optimization methods and algorithms, with much
of the complexity of the optimization software interfaces hidden from the user. Thus, the engineers were easily
able to switch between optimization software packages simply by changing a few lines in the DAKOTA input file.
In addition to applications in structural analysis, DAKOTA has been applied to applications in computational fluid
dynamics, nonlinear dynamics, shock physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods. In addition
to having many state-of-the-art optimization methods, DAKOTA now includes methods for global sensitivity
and variance analysis, parameter estimation, uncertainty quantification, and verification, as well as meta-level
strategies for surrogate-based optimization, mixed-integer nonlinear programming, hybrid optimization, and op-
timization under uncertainty. Underlying all of these algorithms is support for parallel computation; ranging from
the level of a desktop multiprocessor computer up to massively parallel computers found at national laboratories
and supercomputer centers.

This document corresponds to DAKOTA Version 5.1. Release notes for this release, past releases, and current
developmental releases are available from http://dakota.sandia.gov/release notes.html.

As of Version 5.0, DAKOTA is publicly released as open source under a GNU Lesser General Public License and
is available for free download world-wide. See http://www.gnu.org/licenses/lgpl.html for more
information on the LGPL software use agreement. DAKOTA Versions 3.0 through 4.2+ were licensed under
the GNU General Public License. The objective of DAKOTA public release is to facilitate research and software
collaborations among the developers of DAKOTA at Sandia National Laboratories and other institutions, including
academic, governmental, and corporate entities. For more information on the objectives of the open source release
and how to contribute, refer to the DAKOTA FAQ at http://dakota.sandia.gov/fag.html.

The DAKOTA leadership team consists of Brian Adams (project lead), Mike Eldred (research lead), Sophia
Lefantzi (support manager), and Jim Stewart (business manager). DAKOTA development team members include
Bill Bohnhoff, Keith Dalbey, John Eddy, David Gay, Patty Hough, and Laura Swiler. Additional historical con-
tributors to DAKOTA and its third-party libraries are acknowledged on the DAKOTA web page.

Contact Information:

http://dakota.sandia.gov/release_notes.html
http://www.gnu.org/licenses/lgpl.html
http://dakota.sandia.gov/faq.html

18

CONTENTS

Brian M. Adams, DAKOTA Project Lead
Sandia National Laboratories

P.O. Box 5800, Mail Stop 1318
Albuquerque, NM 87185-1318

User community/help: dakota-users @software.sandia.gov
Development team: dakota-developers @development.sandia.gov
Web: http://dakota.sandia.gov

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

mailto:dakota-users@software.sandia.gov
mailto:dakota-developers@development.sandia.gov
http://dakota.sandia.gov

Chapter 1

Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating complex physical sys-
tems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics,
shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop
an understanding and/or predictive capability for the complex behaviors that are often observed in the respective
physical systems. Often, these simulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve or optimize the
performance of a particular system, as defined by one or more system performance objectives. Optimization of
the virtual prototype then requires execution of the simulator, evaluation of the performance objective(s), and
adjustment of the system parameters in an iterative and directed way, such that an improved or optimal solution
is obtained for the simulation as measured by the performance objective(s). System performance objectives can
be formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibra-
tion response; or to maximize performance, reliability, throughput, agility, or design robustness. In addition, one
would often like to design computer experiments, run parameter studies, or perform uncertainty quantification.
These methods allow one to understand how the system performance changes as a design variable or an uncertain
input changes. Sampling strategies are often used in uncertainty quantification to calculate a distribution on sys-
tem performance measures, and to understand which uncertain inputs are the biggest contributors to the variance
of the outputs.

A primary motivations for the development of DAKOTA (Design Analysis Kit for Optimization and Terascale
Applications) is to provide engineers and other disciplinary scientists with a systematic and rapid means to obtain
improved or optimal designs or understand sensitivity or uncertainty using simulation-based models. These capa-
bilities generally lead to better designs and improved system performance in earlier design stages, and eliminate
some dependence on physical prototypes and testing, shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance questions, the
DAKOTA toolkit also provides an extensible platform for the research and rapid prototyping of customized meth-
ods and strategies [35].

20 CHAPTER 1. INTRODUCTION

I DAKOTA

DAKOTA DAKOTA
Parameters File Results File
| Data Data
I Pre-processing Post-processing |

Simulation
Output File

Simulation
[nput File User’s
[o Simulation
Code

Figure 1.1: The loosely-coupled or “black-box” interface between DAKOTA and a user-supplied simulation code.

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and a variety of it-
erative methods and strategies. While DAKOTA was originally conceived as an easy-to-use interface between
simulation codes and optimization algorithms, recent versions have been expanded to interface with other types
of iterative analysis methods such as uncertainty quantification with nondeterministic propagation methods, pa-
rameter estimation with nonlinear least squares solution methods, and sensitivity/variance analysis with general-
purpose design of experiments and parameter study capabilities. These capabilities may be used on their own or
as building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty.

Thus, one of the primary advantages that DAKOTA has to offer is that access to a broad range of iterative capabil-
ities can be obtained through a single, relatively simple interface between DAKOTA and your simulator. Should
you want to try a different type of iterative method or strategy with your simulator, it is only necessary to change
a few commands in the DAKOTA input and start a new analysis. The need to learn a completely different style
of command syntax and the need to construct a new interface each time you want to use a new algorithm are
eliminated.

1.3 How Does DAKOTA Work?

Figure 1.1 depicts a typical loosely-coupled, or “black-box,” relationship between DAKOTA and the simulation
code(s). Such loose coupling is the simplest and most common interfacing approach DAKOTA users employ.
Data is exchanged between DAKOTA and the simulation code by reading and writing short data files, thus using
DAKOTA does not require the source code of the simulation software. DAKOTA is executed using commands
that the user supplies in an input file (not shown in Figure 1.1) which specify the type of analysis to be performed
(e.g., parameter study, optimization, uncertainty quantification, etc.), along with the file names associated with
the user’s simulation code. During its operation, DAKOTA automatically executes the user’s simulation code by
creating a separate process external to DAKOTA.

The solid lines in Figure 1.1 denote file input/output (I/O) operations that are part of DAKOTA or the user’s
simulation code. The dotted lines indicate the passing/conversion of information that must be implemented by

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

1.4. BACKGROUND AND MATHEMATICAL FORMULATIONS 21

the user. As DAKOTA runs, it writes out a parameters file containing the current variable values. DAKOTA then
starts the user’s simulation code (or, often, a short driver script wrapping it), and when the simulation completes,
reads the response data from a results file. This process is repeated until all of the simulation code runs required
by the iterative study are complete.

In some cases it is advantageous to have a close coupling between DAKOTA and the simulation code. This close
coupling is an advanced feature of DAKOTA and is accomplished through either a direct interface or a SAND
(simultaneous analysis and design) interface. For the direct interface, the user’s simulation code is modified to
behave as a function or subroutine under DAKOTA. This interface can be considered to be “semi-intrusive” in
that it requires relatively minor modifications to the simulation code. Its major advantage is the elimination of
the overhead resulting from file I/O and process creation. It can also be a useful tool for parallel processing,
by encapsulating everything within a single executable. A SAND interface approach is “fully intrusive” in that
it requires further modifications to the simulation code so that an optimizer has access to the internal residual
vector and Jacobian matrices computed by the simulation code. In a SAND approach, both the optimization
method and a nonlinear simulation code are converged simultaneously. While this approach can greatly reduce
the computational expense of optimization, considerable software development effort must be expended to achieve
this intrusive coupling between SAND optimization methods and the simulation code. SAND may be supported
in future DAKOTA releases.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization, nonlinear least squares,
sensitivity analysis, design of experiments, and uncertainty quantification problems. The primary goal of this sec-
tion is to introduce terms relating to these topics, and is not intended to be a description of theory or numerical
algorithms. There are numerous sources of information on these topics ([8], [65], [79], [80], [108], [147]) and the
interested reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

minimize: f(x)
x € R"
subject to: gr <gx) <gu
h(x) = hy (L.D)
ar <Ax<ay
A.x =a;

Xp <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulation, x = [z1, 9, ..., 2] is an n-
dimensional vector of real-valued design variables or design parameters. The n-dimensional vectors, x;, and X/,
are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable values
for the elements of x, and the set of all allowable values is termed the design space or the parameter space. A
design point or a sample point is a particular set of values within the parameter space.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

22 CHAPTER 1. INTRODUCTION

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality
constraints, g(x), are ‘“2-sided,” in that they have both lower and upper bounds, g;, and g, respectively. The
nonlinear equality constraints, h(x), have target values specified by h;. The linear inequality constraints create
a linear system A;x, where A; is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have lower and upper bounds, a;, and ay, respectively. The linear equality constraints create a linear
system A .x, where A is the coefficient matrix for the linear system and a; are the target values. The constraints
partition the parameter space into feasible and infeasible regions. A design point is said to be feasible if and only
if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates one or
more of the constraints.

Many different methods exist to solve the optimization problem given by Equation 1.1, all of which iterate on
x in some manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x),
g(x), h(x), are computed, and some algorithm is applied to generate a new x that will either reduce the objective
function, reduce the amount of infeasibility, or both. To facilitate a general presentation of these methods, three
criteria will be used in the following discussion to differentiate them: optimization problem type, search goal, and
search method.

The optimization problem type can be characterized both by the types of constraints present in the problem and by
the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hierarchy of
complexity exists for optimization algorithms, ranging from simple bound constraints, through linear constraints,
to full nonlinear constraints. By the nature of this increasing complexity, optimization problem categorizations
are inclusive of all constraint types up to a particular level of complexity. That is, an unconstrained problem
has no constraints, a bound-constrained problem has only lower and upper bounds on the design parameters, a
linearly-constrained problem has both linear and bound constraints, and a nonlinearly-constrained problem may
contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear constraints are
equality constraints, then this is referred to as an equality-constrained problem, and if all of the linear and non-
linear constraints are inequality constraints, then this is referred to as an inequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A problem where the
objective function and all constraints are linear is called a linear programming (LP) problem. These types of prob-
lems commonly arise in scheduling, logistics, and resource allocation applications. Likewise, a problem where
at least some of the objective and constraint functions are nonlinear is called a nonlinear programming (NLP)
problem. These NLP problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local optimiza-
tion. In global optimization, the goal is to find the design point that gives the lowest feasible objective function
value over the entire parameter space. In contrast, in local optimization, the goal is to find a design point that is
lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be more
computationally expensive than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point that
has a lower objective function or is more feasible than the current design point. The search method can be clas-
sified as either gradient-based or nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradi-
ents can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based
search methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the
more well known of these include pattern search methods (nongradient-based local techniques) and genetic algo-
rithms (nongradient-based global techniques). Because of the computational cost of running simulation models,
surrogate-based optimization (SBO) methods are often used to reduce the number of actual simulation runs. In

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

1.4. BACKGROUND AND MATHEMATICAL FORMULATIONS 23

SBO, a surrogate or approximate model is constructed based on a limited number of simulation runs. The opti-
mization is then performed on the surrogate model. DAKOTA has an extensive framework for managing a variety
of local, multipoint, global, and hierarchical surrogates for use in optimization.

The overview of optimization methods presented above underscores that there is no single optimization method
or algorithm that works best for all types of optimization problems. Chapter 19 provides some guidelines on
choosing which DAKOTA optimization algorithm is best matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective function
for problems of the form:

minimize: f(x)= Z[TZ(X)P

x € R"
subject to: gr <gx) <gu
h(x) = h; (1.2)
ar <Ax<ay
Ax=a;

Xy <x <Xy

where f(x) is the objective function to be minimized and T} (x) is the i*" least squares term. The bound, linear,
and nonlinear constraints are the same as described previously for (1.1). Specialized least squares algorithms are
generally based on the Gauss-Newton approximation. When differentiating f(x) twice, terms of 7;(x)7}’ (x) and
[T!(x)]? result. By assuming that the former term tends toward zero near the solution since T} (x) tends toward
zero, then the Hessian matrix of second derivatives of f(x) can be approximated using only first derivatives of
T;(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution for those
cases when the Hessian approximation is accurate, i.e. the residuals tend towards zero at the solution. Thus, by
exploiting the structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms.

A common example for 7;(x) might be the difference between experimental data and model predictions for a
response quantity at a particular location and/or time step, i.e.:

Ti(x) = Ri(x) — R; (1.3)

where R;(x) is the response quantity predicted by the model and R; is the corresponding experimental data. In
this case, x would have the meaning of model parameters which are not precisely known and are being calibrated
to match available data. This class of problem is known by the terms parameter estimation, system identification,
model calibration, test/analysis reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study methods are useful in
identifying which of the design parameters have the most influence on the response quantities. This information is

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

24 CHAPTER 1. INTRODUCTION

helpful prior to an optimization study as it can be used to remove design parameters that do not strongly influence
the responses. In addition, these techniques can provide assessments as to the behavior of the response functions
(smooth or nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for optimization,
uncertainty quantification, and related methods. In a post-optimization role, sensitivity information is useful is
determining whether or not the response functions are robust with respect to small changes in the optimum design
point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of response
derivatives at a point. These derivatives are then used in a simple analysis to make design decisions. DAKOTA
supports this type of study through numerical finite-differencing or retrieval of analytic gradients computed within
the analysis code. The desired gradient data is specified in the responses section of the DAKOTA input file and
the collection of this data at a single point is accomplished through a parameter study method with no steps.
This approach to sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation, automatic differentiation
(e.g., ADIFOR), or complex step modifications. These sensitivity augmentation activities are completely sepa-
rate from DAKOTA and are outside the scope of this manual. However, once completed, DAKOTA can utilize
these analytic gradients to perform optimization, uncertainty quantification, and related studies more reliably and
efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of
variability in the response functions. DAKOTA supports this type of study through computation of response data
sets (typically function values only, but all data sets are supported) at a series of points in the parameter space.
The series of points is defined using either a vector, list, centered, or multidimensional parameter study method.
For example, a set of closely-spaced points in a vector parameter study could be used to assess the smoothness of
the response functions in order to select a finite difference step size, and a set of more widely-spaced points in a
centered or multidimensional parameter study could be used to determine whether the response function variation
is likely to be unimodal or multimodal. See Chapter 4 for additional information on these methods. These more
global approaches to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable or unreliable, and they are conceptually similar to the design of experiments methods and sampling
approaches to uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of computer experi-
ments (DACE) methods are both techniques which seek to extract as much trend data from a parameter space as
possible using a limited number of sample points. Classical DoE techniques arose from technical disciplines that
assumed some randomness and nonrepeatability in field experiments (e.g., agricultural yield, experimental chem-
istry). DoE approaches such as central composite design, Box-Behnken design, and full and fractional factorial
design generally put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE methods in that
the nonrepeatability component can be omitted since computer simulations are involved. In these cases, space
filling designs such as orthogonal array sampling and Latin hypercube sampling are more commonly employed
in order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are constructed
to fill the unit hypercube with good uniformity of coverage can also be used for DACE.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds are used in
selecting the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases of the more
general probabilistic sampling for uncertainty quantification (see following section), in which the DoE/DACE
parameters are treated as having uniform probability distributions. The DoE/DACE techniques are commonly
used for investigation of global response trends, identification of significant parameters (e.g., main effects), and

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

1.5. USING THIS MANUAL 25

as data generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications.

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in the
parameters affect the response functions of the engineering design problem. However, for UQ, some or all of
the components of the parameter vector, x, are considered to be uncertain as specified by particular probability
distributions (e.g., normal, exponential, extreme value). By assigning specific distributional structure to the inputs,
distributional structure for the outputs (i.e., response statistics) can be inferred.

Current methods for modeling aleatory uncertainty include sampling methods, local and global reliability meth-
ods, polynomial chaos expansions (PCE), and stochastic collocation. Current methods for modeling epistemic and
mixed aleatory/epistemic uncertainties include second-order probability, Dempster-Shafer theory of evidence, and
local or global interval estimation. The sampling, reliability, stochastic expansion, Dempster-Shafer, and interval
UQ approaches are described in more detail in Chapter 6. Second-order probability is described in Section 11.6.1.

1.5 Using this Manual

The previous sections in this chapter provide a brief overview of the capabilities in DAKOTA, and introduce some
of the common terms that are used in the fields of optimization, parameter estimation, sensitivity analysis, design
of experiments, and uncertainty quantification. A DAKOTA user new to these techniques and terms is advised to
consult the cited references to obtain more detailed descriptions of methods and algorithms in these disciplines.

Chapter 2 provides information on how to obtain, install, and use DAKOTA. In addition, example problems are
presented in this tutorial chapter to demonstrate some of DAKOTA’s capabilities for parameter studies, optimiza-
tion, and UQ. Chapter 3 provides a brief overview of all of the different software packages and capabilities in
DAKOTA. Chapter 4 through Chapter 8 provide details on the iterative algorithms supported in DAKOTA, and
Chapters 10 and 9 describe DAKOTA’s advanced strategies for optimization and hybrid approaches. Chapter 11
through Chapter 14 provide information on model components which are involved in parameter to response map-
pings and Chapters 15 and 16 describe the inputs to and outputs from DAKOTA. Chapter 17 provides information
on interfacing DAKOTA with engineering simulation codes, Chapter 18 covers DAKOTA’s parallel computing ca-
pabilities, and Chapter 19 provides some usage guidelines for selecting DAKOTA algorithms. Finally, Chapter 20
through Chapter 22 describe restart utilities, failure capturing facilities, and additional test problems, respectively.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

26

CHAPTER 1. INTRODUCTION

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Chapter 2

DAKOTA Tutorial

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run Unix and Linux operating systems. The
computers and operating systems actively supported by the DAKOTA project include:

Intel/AMD Redhat Enterprise Linux 4,5,6 (RHEL4, RHELS, RHEL6) with gcc and Intel compilers

Sun Solaris 5.10 with SunPro CC compilers

IBM AIX 5.3 with xIC compilers

e Mac OS X 10.5 with gcc compilers

In addition, partial support is provided for PC Windows (via Cygwin) with gcc/g95 compilers, PC Windows
(via MinGW) with gcc-4 compilers, and Sandia’s ASC Red Storm with PGI compilers. Additional details are
provided in the file Dakota/README in the distribution (see the following section for download instructions).
Further platform/operating system-specific guidance can be found in Dakota/examples/platforms included with
DAKOTA.

For answers to common questions and solutions to common problems in downloading, building, installing, or
running DAKOTA, refer to http://dakota.sandia.gov/faqg.html for additional information.

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

Users outside of Sandia National Laboratories may obtain the DAKOTA binary executable files and source code
files through the download link available here:

http://dakota.sandia.gov/download.html

To receive the binary or source code files, you are asked to fill out a short online registration form. The information
provided is used by the DAKOTA development team to collect software usage metrics; the form also lets you sign
up for update announcements.

If you wish to run DAKOTA on one of the supported or partially supported platforms, we suggest that you
download the relevant binary executable distribution rather than the source code distribution. This gets you up

http://dakota.sandia.gov/faq.html
http://dakota.sandia.gov/download.html

28 CHAPTER 2. DAKOTA TUTORIAL

and running quickly and lets you gain an understanding of DAKOTA by running the example problems that are
provided with the binary distributions. For more experienced users, DAKOTA can be customized with additional
packages and ported to other computer platforms when building from the source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files are routinely compiled and distributed to the engineering sciences LANs and
common compute servers at Sandia, Los Alamos, and Lawrence Livermore. At Sandia, consult the Codes & Tools
tab of the computing.sandia.gov web portal or the DAKOTA internal webpage for specific installation locations
and preferred usage. These installations are typically supported by modules, e.g., module avail dakota.
However, binaries can be located by absolute path as well, e.g., /usr/local/dakota/bin/dakota or
/projects/dakota/bin/<system>/dakota, where “<system>”is 1inux64, osx, or other. To see
if DAKOTA is available on your computer system and accessible in your Unix environment path settings, type
the command which dakota at the Unix prompt. If the DAKOTA executable file is in your path, its location
will be echoed to the terminal. If the DAKOTA executable file is available on your system but not in your path,
then you will need to locate it and add its directory to your path (the Unix whereis and £ind commands can
be useful for locating the executable).

If DAKOTA is not available on your system, consider getting an account on one of the common compute servers
where DAKOTA is maintained. If not practical, visit the DAKOTA internal webpage or consult the DAKOTA
developers so we can provide you with the most complete DAKOTA distribution possible, i.e., including Sandia-
specific and/or site-licensed software. As a last resort, you can acquire external versions of DAKOTA as described
above.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a Unix tar file that
has a name similar to Dakota_5_x.0Sversion.tar.gz.

Use the GNU utility gunzip to uncompress the tar file and the Unix tar utility to extract the files from the
archive by executing the following commands:

gunzip Dakota_5_x.0Sversion.tar.gz
tar —-xvf Dakota_b5_x.0Sversion.tar

Slightly faster and less demanding of disk space is to invoke
gzip —-dc Dakota_5_x.0Sversion.tar.gz | tar xf -

The tar utility will create a subdirectory named Dakota in which the DAKOTA executables and example files
will be stored. The executables are in Dakota/bin, and the example problems are Dakota/test and in
subdirectories of Dakota/examples. See file Dakota/examples/README for more details about these
subdirectories.

A similar process applies to windows distributions which are packaged as ZIP files and can be extracted with the
Windows extractor or WinZIP, for example. For getting started on Windows, see the files INSTALL. cygwin
and INSTALL.mingw in Dakota/examples/platforms.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.1. INSTALLATION GUIDE 29

2.1.4 Installing DAKOTA - Source Code Files

Following the download, decompression, and extraction of the file Dakota_5_x.src.tar.gz, the basic steps
follow the standard GNU distribution process of:

configure
make

to construct Makefiles and build the system, respectively. After the build complete, one can optionally
make install

to install the executable in a desired location. Please note that these simple steps imply a build process in which
the configuration, object files, libraries, and binary executables all reside in the same directory as the extracted
Dakota source distribution. Many developers on the DAKOTA development team use this approach so it is
encouraged. That said, DAKOTA does support out-of-source build trees as long as GNU make (or other make
installation that supports VPATH variable) is used. Detailed instructions for building DAKOTA are given in the
file Dakota/INSTALL.

2.1.5 Running DAKOTA

The DAKOTA executable file is named dakota. If this command is entered at the command prompt without any
arguments, the following usage message appears (please ensure ’." is in your PATH):

usage: dakota [options and <args>]
~help (Print this summary)
-version (Print DAKOTA version number)
—-input <$val> (REQUIRED DAKOTA input file $val)
—output <$val> (Redirect DAKOTA standard output to file $val)
—error <$val> (Redirect DAKOTA standard error to file $val)
-parser <$val> (Parsing technology: nidr[strict] [:dumpfile])
—check (Perform input checks)
-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
—-post_run [$val] (Perform post-run (final results) phase)
-read_restart [$val] (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new DAKOTA restart file $val)

Of these available command line inputs, only the “~input” option is required, and “~input” can be omitted
if the input file name is the final item on the command line; all other command-line inputs are optional. The
“~help” option prints the usage message above. The “—version” option prints the version number of the
executable. The “~check” option invokes a dry-run mode in which the input file is processed and checked for
errors, but the study is not performed. The “~input” option provides the name of the DAKOTA input file.
The “~output” and “~error” options provide file names for redirection of the DAKOTA standard output
(stdout) and standard error (stderr), respectively. The “~parser” input is for debugging and will not be further
described here. The “~read_restart” and “~write_restart” command line inputs provide the names of
restart databases to read from and write to, respectively. The “~stop_restart” command line input limits the
number of function evaluations read from the restart database (the default is all the evaluations) for those cases in
which some evaluations were erroneous or corrupted. Restart management is an important technique for retaining

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

30 CHAPTER 2. DAKOTA TUTORIAL

data from expensive engineering applications. This advanced topic is discussed in detail in Chapter 19. Note that
these command line inputs can be abbreviated so long as the abbreviation is unique, so the following are valid,

unambiguous Speciﬁcations: “_h”’ “_V’,, ‘G_c,9, ‘G_i,?, ‘6_0,9’ 46_e7” éé_re7” “_S”’ Gﬁ_w?’, G‘_pr”, Cﬁ_ru”’ and
“—po” and can be used in place of the longer forms of the command line inputs.

To run DAKOTA with a particular input file, the following syntax can be used:
dakota —-i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect stdout
and stderr to separate files, the —o and —e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err
or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects stdout to
another file:

dakota dakota.in > dakota.out

To append to a file rather than overwrite it, “>>" is used in place of “>”. The syntax to redirect stderr as well as
stdout to the same file depends on the shell you are using. With csh, simply append “&” with no embedded space,
ie., “>&” or “>>&”. With the Bourne shell (sh or bash) use “>dakota.out 2>&1” or “>>dakota.out
2>&1”. With csh, if you have the noclobber environment variable set but wish either to overwrite an existing
output file or to append to a file that does not yet exist, append “!” to the redirection operators (with no intervening
spaces), i.e., “> 17, “>& 17, “>> 17 or “>>& 17,

To run the dakota process in the background, append an ampersand symbol (&) to the command with an embedded
space, e.g.,

dakota dakota.in > dakota.out &

Refer to [7] for more information on Unix redirection and background commands.

ELIT3

The “~pre_run”, “~run”, and “~post_run” switches instruct DAKOTA to run one or more execution phases,
excluding others. For example pre-run might generate variable sets, run (core run) invoke the simulation to
evaluate variables, producing responses, and post-run accepts variable/response sets and analyzes the results (for
example, calculate correlations from a set of samples). Currently only two modes are supported and only for
sampling, parameter study, and DACE methods: (1) pre-run only with optional tabular output of variables:

dakota -i dakota.in -pre_run [::myvariables.dat]
and (2) post-run only with required tabular input of variables/responses:

dakota -1 dakota.in -post_run myvarsresponses.dat::

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.2. ROSENBROCK AND TEXTBOOK TEST PROBLEMS 31

2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [125] (also described in [65], among
other places), which has the form:

f(z1,m2) = 100(z2 — 23)? + (1 — x1)? @2.1)
A three-dimensional plot of this function is shown in Figure 2.1(a), where both x; and x5 range in value from —2

to 2. Figure 2.1(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s
function is formulated as follows:

minimize f(z1,22)

subject to

rosenbrock

Figure 2.1: Rosenbrock’s function: (a) 3-D plot and (b) contours with z; on the bottom axis.

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization
problem. The unique solution to this problem lies at the point (x1, z2) = (1, 1), where the function value is zero.

The two-variable version of the “textbook™ example problem provides a nonlinearly constrained optimization test
case. It is formulated as:

minimize f=(x; =D+ (22— 1)*
subject to glzm%—%go
gz:wg—%éo 2.3)
0.5 <x; <5H8
—29<25<29

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

32 CHAPTER 2. DAKOTA TUTORIAL

Contours of this example problem are illustrated in Figure 2.2(a), with a close-up view of the feasible region given
in Figure 2.2(b).
1
.
0,

0.

o

prs

O)

B0

U
111 \
\“W‘M“\\ i
H\

LY
\\»\»\\\

IIATAARAYY

0.

l\)

X2

047

-0.6];

textbook
constraint g1<0
----- constraint g2<0

-3 2 -1 0 1 2 3 4 -1 -05 0 05 1

=0 textbook
—constraint g1<0
----- constraint g2<0

-0.81

Figure 2.2: Contours of the textbook problem (a) on the [—3,4] x [—3,4] domain and (b) zoomed into an area
containing the constrained optimum point (x1, z2) = (0.5,0.5). The feasible region lies at the intersection of the
two constraints g; (solid) and go (dashed).

For the textbook example problem, the unconstrained minimum occurs at (x1,xz2) = (1, 1). However, the inclu-
sion of the constraints moves the minimum to (21, x2) = (0.5,0.5).

Several other example problems are available. See Chapter 22 for a description of these example problems as well
as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in the distribu-
tion tar files within directory Dakota/examples/tutorial. A simple DAKOTA input file (that is named
dakota-rosenbrock_2d.in) for a two-dimensional parameter study on Rosenbrock’s function is shown in
Figure 2.3. This input file will be used to describe the basic format and syntax used in all DAKOTA input files.

There are six specification blocks that may appear in DAKOTA input files. These are identified in the input
file using the following keywords: variables, interface, responses, model, method, and strategy. These keyword
blocks can appear in any order in a DAKOTA input file. At least one variables, interface, responses, and method
specification must appear, and no more than one strategy specification should appear. In Figure 2.3, one of each
of the keyword blocks is used. Additional syntax features include use of the # symbol to indicate a comment, use
of single or double quotes for string inputs (e.g., ’ x1”), the use of commas and/or white space for separation
of specifications, and the optional use of “=" symbols to indicate supplied data. See the DAKOTA Reference
Manual [3] for additional details on this input file syntax.

The first section of the input file shown in Figure 2.3 is the strategy section. This keyword section is used to
specify some of DAKOTA’s advanced meta-procedures such as hybrid optimization, multi-start optimization, and
Pareto optimization. See Chapter 10 for more information on these meta-procedures. The strategy section also

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.3. DAKOTA INPUT FILE FORMAT 33

DAKOTA INPUT FILE - dakota_rosenbrock_2d.in

strategy,
single_method
graphics, tabular_graphics_data

method,
multidim_parameter_study
partitions = 8 8
model,
single

variables,

continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface,

direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.3: Rosenbrock 2-D parameter study example: the DAKOTA input file.

contains the settings for DAKOTA'’s graphical output (via the graphics flag) and the tabular data output (via
the tabular_graphics_data keyword).

The method section of the input file specifies the iterative technique that DAKOTA will employ, such as a parame-
ter study, optimization method, data sampling technique, etc. The keyword multidim parameter_study in
Figure 2.3 calls for a multidimensional parameter study, while the keyword partitions specifies the number
of intervals per variable. In this case, there will be eight intervals (nine data points) evaluated between the lower
and upper bounds of both variables (bounds provided subsequently in the variables section), for a total of 81
response function evaluations.

The model section of the input file specifies the model that DAKOTA will use. A model provides the logical unit
for determining how a set of variables is mapped into a set of responses in support of an iterative method. The
model allows one to specify a single interface, or to manage more sophisticated mappings involving surrogates
or nested iteration. For example, one might want to use an approximate model for optimization or uncertainty
quantification, due to the lower computational cost. The mode 1 keyword allows one to specify if the iterator will
be operating on a data fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate
(which uses the corrected results of a lower fidelity simulation model as an approximation to a higher fidelity
simulation), or a nested model. See Chapter 11 for additional model specification details. If these advanced
facilities for surrogate modeling or nested iteration are not required, then it is not necessary to specify the model

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

34 CHAPTER 2. DAKOTA TUTORIAL

keyword at all, since the default behavior is the use of a “single” model constructed with the last set of responses,
variables, and interface specified. In Figure 2.3, the keyword single explicitly specifies the use of a single
model in the parameter study, even though this is the default.

The variables section of the input file specifies the characteristics of the parameters that will be used in the
problem formulation. The variables can be continuous or discrete, and can be classified as design variables,
uncertain variables, or state variables. See Chapter 12 for more information on the types of variables supported
by DAKOTA. The variables section shown in Figure 2.3 specifies that there are two continuous design variables.
The sub-specifications for continuous design variables provide the descriptors “x1” and “x2” as well as lower
and upper bounds for these variables. The information about the variables is organized in column format for
readability. So, both variables z; and 2 have a lower bound of -2.0 and an upper bound of 2.0.

The interface section of the input file specifies what approach will be used to map variables into responses as
well as details on how DAKOTA will pass data to and from a simulation code. In this example, the keyword
direct is used to indicate the use of a function linked directly into DAKOTA. Alternatively, fork or system
executions can be used to invoke instances of a simulation code that is external to DAKOTA, as explained in
Section 2.4.4.2 and Chapter 17. The analysis_driver keyword indicates the name of the test function. With
fork or system, default file names would be used for passing data between DAKOTA and the simulation code.

The responses section of the input file specifies the types of data that the interface will return to DAKOTA. For
the example shown in Figure 2.3, the assignment num_objective_functions = 1 indicates that there is
only one objective function. Since there are no constraints associated with Rosenbrock’s function, the keywords
for constraint specifications are omitted. The keywords no_gradients and no_hessians indicate that no
derivatives will be provided to the method; none are needed for a parameter study.

2.4 Example Problems

This section serves to familiarize users about how to perform parameter studies, optimization, and uncertainty
quantification through their common DAKOTA interface. The initial examples utilize simple built in driver func-
tions; later we show how to utilize DAKOTA to drive the evaluation of user supplied black box code. The
examples presented in this chapter are intended to show the simplest use of DAKOTA for several methods of each
type. More advanced examples of using DAKOTA for specific purposes are provided in subsequent, topic-based,
chapters.

2.4.1 Parameter Studies

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selection of
points in the parameter space. These response data sets are not linked to any specific interpretation, so they may
consist of any allowable specification from the responses keyword block, i.e., objective and constraint functions,
least squares terms and constraints, or generic response functions. This allows the use of parameter studies in
direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. The two examples given in this subsection are for a two-dimensional tensor product
of sample points and a vector parameter study.

24.1.1 Two-Dimensional Grid Parameter Study

The 2-D parameter study example problem listed in Figure 2.3 is executed by DAKOTA using the following
command:

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 35

dakota dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file named 2d . out. For comparison, a file named 2d.. out . sav
isincluded in the Dakota/examples/tutorial directory. As for many of the examples, DAKOTA provides
a report on the best design point located during the study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.4. In general, a multidimensional
parameter study lets one generate a grid in multiple dimensions. The keyword multidim parameter_study
indicates that a grid will be generated over all variables. The keyword partitions indicates the number of grid
partitions in each dimension. For this example, the number of the grid partitions are the same in each dimension (8
partitions) but it would be possible to specify (partitions = 8 2), and have only two partitions over the second input
variable. Note that the graphics flag in the strategy section of the input file could be commented out since,
for this example, the iteration history plots created by DAKOTA are not particularly instructive. More interesting
visualizations can be created by importing DAKOTA’s tabular data into an external graphics/plotting package.
Common graphics and plotting packages include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and
many others. (Sandia National Laboratories and the DAKOTA developers do not endorse any of these commercial
products.)

0
X1

Figure 2.4: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

2.4.1.2 Vector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter study, i.e., a
parameter study between any two design points in an n-dimensional parameter space.

An input file for the vector parameter study is shown in Figure 2.5. The primary differences between this input
file and the previous input file are found in the variables and method sections. In the variables section, the
keywords for the bounds are removed and replaced with the keyword initial _point that specifies the starting
point for the parameter study. In the method section, the vector_parameter_study keyword is used. The
final point keyword indicates the stopping point for the parameter study, and num_steps specifies the
number of steps taken between the initial and final points in the parameter study.

The vector parameter study example problem is executed using the command

dakota dakota_rosenbrock_vector.in > vector.out

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

36 CHAPTER 2. DAKOTA TUTORIAL

DAKOTA INPUT FILE - dakota_rosenbrock_vector.in

strategy,
single_method
graphics, tabular_graphics_data

method,
vector_parameter_study
final point = 1.1 1.3
num_steps = 10
model,
single
variables,
continuous_design = 2
initial_point -0.3 0.2
descriptors rx1’ "x2"
interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.5: Rosenbrock vector parameter study example: the DAKOTA input file.

Figure 2.6(a) shows the graphics output created by DAKOTA. For this study, the simple DAKOTA graphics are
more useful for visualizing the results. Figure 2.6(b) shows the locations of the 11 sample points generated in this
study. It is evident from these figures that the parameter study starts within the banana-shaped valley, marches
up the side of the hill, and then returns to the valley. The output file vector.out.sav is provided in the
Dakota/examples/tutorial directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and centered param-
eter study methods. Refer to Chapter 4 for additional information.

2.4.2 Optimization

DAKOTA’s optimization capabilities include a variety of gradient-based and nongradient-based optimization
methods. This subsection demonstrates the use of several such methods through the DAKOTA interface.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 37
40 1z T .4
353 1 121
30 b 8 1
25 0.6
0.8
- 4 Y 4
h] "Ill{ '\" 0.z 0.6
0 k) o 4
51 -0z 3 0.z
0 i 0.4 0
] 2 4 f g o 1z] 2 4] 8 1 1z 1] 2 4 f g o 1z
Nptior
-2 -1 o T
X1
(b)
Figure 2.6: Rosenbrock vector parameter study example: (a) screen capture of the DAKOTA graphics and (b)

location of the design points (dots) evaluated.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

38 CHAPTER 2. DAKOTA TUTORIAL

24.2.1 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure 2.7. The
format of the input file is similar to that used for the parameter studies, but there are some new keywords in
the responses and method sections. First, in the responses section of the input file, the keyword block start-
ing with numerical_gradients specifies that a finite difference method will be used to compute gradients
for the optimization algorithm. Note that the Rosenbrock function evaluation code inside DAKOTA has the
ability to give analytical gradient values. (To switch from finite difference gradient estimates to analytic gra-
dients, uncomment the analytic_gradients keyword and comment out the four lines associated with the
numerical_gradients specification.) Next, in the method section of the input file, several new keywords
have been added. In this section, the keyword conmin_frcg indicates the use of the Fletcher-Reeves conjugate
gradient algorithm in the CONMIN optimization software package [146] for bound-constrained optimization. The
keyword max_iterations is used to indicate the computational budget for this optimization (in this case, a
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and the
line search steps). The keyword convergence_tolerance is used to specify one of CONMIN’s convergence
criteria (under which CONMIN terminates if the objective function value differs by less than the absolute value
of the convergence tolerance for three successive iterations).

This DAKOTA input file is executed using the following command:
dakota dakota_rosenbrock_grad_opt.in > grad_opt.out

The sample file grad_opt .out .sav isincluded in Dakota/examples/tutorial for comparison. When
this example problem is executed, DAKOTA creates some iteration history graphics similar to the screen capture
shown in Figure 2.8(a). These plots show how the objective function and design parameters change in value
during the optimization steps. The scaling of the horizontal and vertical axes can be changed by moving the scroll
knobs on each plot. Also, the “Options” button allows the user to plot the vertical axes using a logarithmic scale.
Note that log-scaling is only allowed if the values on the vertical axis are strictly greater than zero.

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point
(x1,22) = (—1.2,1.0) as given in the DAKOTA input file. Subsequent iterations follow the banana-shaped
valley that curves around toward the minimum point at (21, x2) = (1.0, 1.0). Note that the function evaluations
associated with the line search phase of each CONMIN iteration are not shown on the plot. At the end of the
DAKOTA run, information is written to the output file to provide data on the optimal design point. These data
include the optimum design point parameter values, the optimum objective and constraint function values (if any),
plus the number of function evaluations that occurred and the amount of time that elapsed during the optimization
study.

2.4.2.2 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly constrained prob-
lem. The “textbook” example problem (see Section 2.2) is used for this purpose and the DAKOTA input file
for this example problem is shown in Figure 2.9. This input file is similar to the input file for the unconstrained
gradient-based optimization example problem involving the Rosenbrock function. Note the addition of commands
in the responses section of the input file that identify the number and type of constraints, along with the upper
bounds on these constraints. The commands direct and analysis_driver = ’text_book’ specify that
DAKOTA will use its internal version of the textbook problem.

The following command runs this example problem:

dakota dakota_textbook.in > textbook.out

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 39

DAKOTA INPUT FILE - dakota_rosenbrock_grad_opt.in

strategy,
single_method
graphics,tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = le—-4
model,
single
variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface,
direct
analysis_driver = ’rosenbrock’
responses,
num_objective_functions = 1

analytic_gradients
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1l.e-5
no_hessians

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the DAKOTA input file.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

40 CHAPTER 2. DAKOTA TUTORIAL

100 15 12
o 14
10 1
[1 .
1 g 5 b T e
o 03 ! 0.6
0.1 W . s A
0.01 s | J'f'u 0.3 L\(-] _VJ”
0.001 J;,JI" 0 ll‘l.r i
0.0001 iy 02 |
1e-05 13 0.4
O 20 40 &0 80 100 0 20 40 60 €0 100 0 20 40 60 €0 100
Objective Fn

Options { I_III}

(=) rosenbrock)
® jteration history | —

Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the DAKOTA
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

The conmin_mfd keyword in Figure 2.9 tells DAKOTA to use the CONMIN package’s implementation of the
Method of Feasible Directions (see Section 7.2.3 for more details). A significantly faster alternative is the DOT
package’s Modified Method of Feasible Directions, i.e. dot _mmfd (see Section 7.2.4 for more details). However,
DOT is licensed software that may not be available on a particular system. If it is installed on your system and
DAKOTA has been compiled without the ——without-dot flag, you may use it by commenting out the line
with conmin_mfd and uncommenting the line with dot _mmfd.

The file textbook.out . savisincluded in Dakota/examples/tutorial for comparison purposes. The
results of the optimization example problem are listed at the end of the textbook . out file. This information
shows that the optimizer stopped at the point (x1,z2) = (0.5,0.5), where both constraints are approximately
satisfied, and where the objective function value is 0.128. The progress of the optimization algorithm is shown in
Figure 2.10(a) where the dots correspond to the end points of each iteration in the algorithm. The starting point
is (x1,z2) = (0.9,1.1), where both constraints are violated. The optimizer takes a sequence of steps to minimize
the objective function while reducing the infeasibility of the constraints. The optimization graphics are also shown

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 41

strategy,
single_method
graphics, tabular_graphics_data

method,
DOT performs better, but may not be available
dot_mmfd,
conmin_mfd,
max_iterations = 50,
convergence_tolerance = le-4
variables,
continuous_design = 2
initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors rx1’ rx27
interface,
direct
analysis_driver = "text_book’
responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2

numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1l.e-4
no_hessians

Figure 2.9: Textbook gradient-based constrained optimization example: the DAKOTA input file.
in Figure 2.10(b).

2.4.2.3 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least-squares minimization problems
(see Section 22.1 and Section 22.2). For example, the Rosenbrock problem can be cast as:

minimize (f1)?+ (f2)? (2.4)

where f; = 10(xo — %) and fo = (1 — x1). When using a least-squares approach to minimize a function,
each of the least-squares terms f1, fo, ... is driven toward zero. This formulation permits the use of specialized
algorithms that can be more efficient than general purpose optimization algorithms. See Chapter 8 for more detail
on the algorithms used for least-squares minimization, as well as a discussion on the types of engineering design
problems (e.g., parameter estimation) that can make use of the least-squares approach.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

42

CHAPTER 2. DAKOTA TUTORIAL

6 0.5 0.8
s 0.5 0.6 1'
o U_A U_.fl ||
0. 0.z |'
2 |I I. 0.2 Il I| 2 0 I|
T i RO - o
0 ,_J U o — 0.4
o 10 z0 =0 o 10 0 0 u} 10 i1 0
Objective Fn Ineq Constraint 1 Ineq Constraint 2
Options Options [U_lm
1
0 "H]l
0.5 d
F ", 0.5
0.4 o lul |
-0.25
0.z e I|I
o] -0.75
1] 10 bl =11 <0 1] 10 20 30 <0

YAV
N
VA

I
IR
\ L

—— constraint g1<0|—
""" constraint g2<0——————

® jteration history =
3 2 1 0 1 2 3 4
X1

(b)

Figure 2.10: Textbook gradient-based constrained optimization example: (a) screen capture of the DAKOTA
graphics shows how the objective function was reduced during the search for a feasible design point and (b)
iteration history (iterations marked by solid dots).

Figure 2.11 is a listing of the DAKOTA input file dakota_rosenbrock_1s.in. This input file differs from
the input file shown in Figure 2.7 in several key areas. The responses section of the input file uses the keyword
num_least_squares_terms = 2 instead of the num objective_functions = 1. The method section
of the input file shows that the NL2SOL algorithm [26] (n12s01) is used in this example. (The Gauss-Newton,
NL2SOL, and NLSSOL SQP algorithms are currently available for exploiting the special mathematical structure

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 43

of least squares minimization problems).

DAKOTA INPUT FILE - dakota_rosenbrock_ls.in

strategy,
single_method
graphics,tabular_graphics_data

method,
nl2sol
max_iterations = 100
convergence_tolerance = le—-4
model,
single
variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface,
direct
analysis_driver = 'rosenbrock’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

Figure 2.11: Rosenbrock nonlinear least squares example: the DAKOTA input file.

The input file listed in Figure 2.11 is executed using the command:

dakota dakota_rosenbrock_ls.in > leastsquares.out

The file leastsquares.out.sav is included Dakota/examples/tutorial for comparison purposes.
The optimization results at the end of this file show that the least squares minimization approach has found the
same optimum design point, (z1,z2) = (1.0, 1.0), as was found using the conventional gradient-based optimiza-
tion approach. The iteration history of the least squares minimization is given in Figure 2.12, and shows that 14
function evaluations were needed for convergence. In this example the least squares approach required about half
the number of function evaluations as did conventional gradient-based optimization. In many cases a good least
squares algorithm will converge more rapidly in the vicinity of the solution.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

44 CHAPTER 2. DAKOTA TUTORIAL
1 25
i A\ P
-1 Ilh_h ‘Il'lv =
1a
2 1 \q\
'4J,,I 0.4 \
-5] F
o 5 & v5 10 1z5 15 o 25 & T35 10 125 13
least sq term least sq term
1 1i
A
0.5 . i I
0 \
y 0.6
05 //_ 0.4 ff
0.z
S . Y
F. 1 1 III,,.—’
-1.4 -0.2
o x5 & TS5 10 125 15 o 25 &5 TF5 10 125 15

Figure 2.12: Rosenbrock nonlinear least squares example: iteration history for least squares terms f; and fo.

Options Options

2.4.2.4 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of nongradient-based
algorithms. One particular nongradient-based algorithm for local optimization is known as pattern search (see
Chapter 1 for a discussion of local versus global optimization). The DAKOTA input file shown in Figure 2.13
applies a pattern search method to minimize the Rosenbrock function. While this provides for an interesting
comparison to the previous example problems in this chapter, the Rosenbrock function is not the best test case
for a pattern search method. That is, pattern search methods are better suited to problems where the gradients
are too expensive to evaluate, inaccurate, or nonexistent — situations common among many engineering op-
timization problems. It also should be noted that nongradient-based algorithms generally are applicable only to
unconstrained or bound-constrained optimization problems, although the inclusion of general linear and nonlinear
constraints in nongradient-based algorithms is an active area of research in the optimization community. For most
users who wish to use nongradient-based algorithms on constrained optimization problems, the easiest route is to
create a penalty function, i.e., a composite function that contains the objective function and the constraints, exter-
nal to DAKOTA and then optimize on this penalty function. Most optimization textbooks will provide guidance
on selecting and using penalty functions.

The DAKOTA input file shown in Figure 2.13 is similar to the input file for the gradient-based optimization,
except it has a different set of keywords in the method section of the input file, and the gradient specification in
the responses section has been changed to no_gradients. The pattern search optimization algorithm used is
part of the COLINY library [81]. See the DAKOTA Reference Manual [3] for more information on the methods
section commands that can be used with COLINY algorithms.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 45

DAKOTA INPUT FILE - dakota_rosenbrock_ps_opt.in
strategy,
single_method
graphics, tabular_graphics_data
method,
coliny_pattern_search
max_iterations = 1000
max_function_evaluations = 2000
solution_accuracy = le-4
initial_delta = 0.5
threshold_delta = le-4
exploratory_moves basic_pattern
contraction_factor = 0.75
model,
single
variables,
continuous_design = 2
initial_point 0.0 0.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface,
direct
analysis_driver = ’rosenbrock’
responses,
num_objective_functions = 1
no_gradients
no_hessians

Figure 2.13: Rosenbrock pattern search optimization example: the DAKOTA input file.

This DAKOTA input file is executed using the following command:
dakota dakota_rosenbrock_ps_opt.in > ps_opt.out

The file ps_opt .out.sav is included in the Dakota/examples/tutorial directory. For this run, the
optimizer was given an initial design point of (1, z2) = (0.0,0.0) and was limited to 2000 function evaluations.
In this case, the pattern search algorithm stopped short of the optimum at (x1,22) = (1.0, 1,0), although it was
making progress in that direction when it was terminated. (It would have reached the minimum point eventually.)

The iteration history is provided in Figures 2.14(a) and (b), which show the locations of the function evaluations
used in the pattern search algorithm. Figure 2.14(c) provides a close-up view of the pattern search function
evaluations used at the start of the algorithm. The coordinate pattern is clearly visible at the start of the iteration

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

46 CHAPTER 2. DAKOTA TUTORIAL

history, and the decreasing size of the coordinate pattern is evident at the design points move toward (z1,x2) =
(1.0,1.0).

1 1 0 s
ki o e— _____.--"'"'_'-._-_-
05 0 0.6
I 0.6 r_ 0.4
f /
& 0.z
0.4
0.2 0
L 0 -0z
F: '
0 — 0.z 0.4
0 s00 1000 1500 Z000 0 s00 1000 1500 ZOOO 0 s00 1000 1500 ZOOO

Objective Fn

[LUM Options [LUM
(a)

0.4 rosenbrock
® jteration history
-0.5 - - -
-0.5 0 05
X1
(©

Figure 2.14: Rosenbrock pattern search optimization example: (a) screen capture of the DAKOTA graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coordinate pattern
used.

While pattern search algorithms are useful in many optimization problems, this example shows some of the
drawbacks to this algorithm. While a pattern search method may make good initial progress towards an optimum,
it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s function, a nongradient-
based method will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based optimizers
ineffective. Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic algorithms
as discussed in the next section) are often good choices in complex engineering applications when the quality of
gradient data is suspect.

2.4.2.5 Nongradient-based Optimization via Evolutionary Algorithm

In contrast to pattern search algorithms, which are local optimization methods, evolutionary algorithms (EA) are
global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock function

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 47

is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are best suited
to optimization problems that have multiple local optima, and where gradients are either too expensive to compute
or are not readily available.

Evolutionary algorithms are based on Darwin’s theory of survival of the fittest. The EA algorithm starts with a
randomly selected population of design points in the parameter space, where the values of the design parameters
form a “genetic string,” analogous to DNA in a biological system, that uniquely represents each design point in
the population. The EA then follows a sequence of generations, where the best design points in the population
(i.e., those having low objective function values) are considered to be the most “fit” and are allowed to survive and
reproduce. The EA simulates the evolutionary process by employing the mathematical analogs of processes such
as natural selection, breeding, and mutation. Ultimately, the EA identifies a design point (or a family of design
points) that minimizes the objective function of the optimization problem. An extensive discussion of EAs is
beyond the scope of this text, but may be found in a variety of sources (cf., [79] pp. 149-158; [72]). Currently, the
EAs available in DAKOTA include a genetic algorithm for problems involving discrete variables and an evolution
strategy with self-adaptation for problems with continuous variables. Details of these algorithms are given in the
DAKOTA Reference Manual [3]. The COLINY library, which provides the EA software that has been linked into
DAKOTA, is described in [81].

Figure 2.15 shows a DAKOTA input file that uses an EA to minimize the Rosenbrock function. For this example
the EA has a population size of 50. At the start of the first generation, a random number generator is used to
select 50 design points that will comprise the initial population. [A specific seed value is used in this example to
generate repeatable results, although, in general, one should use the default setting which allows the EA to choose
a random seed.] A two-point crossover technique is used to exchange genetic string values between the members
of the population during the EA breeding process. The result of the breeding process is a population comprised
of the 10 best “parent” design points (elitist strategy) plus 40 new “child” design points. The EA optimization
process will be terminated after either 100 iterations (generations of the EA) or 2,000 function evaluations. The
EA software available in DAKOTA provides the user with much flexibility in choosing the settings used in the
optimization process. See [3] and [81] for details on these settings.

The following command runs DAKOTA on the input file:
dakota dakota_rosenbrock_ea_opt.in > ea_opt.out

A corresponding output file named ea_opt.out.sav appears in Dakota/examples/tutorial. The
EA optimization results printed at the end of this file show that the best design point found was (z1,z2) =
(0.98,0.95). The file ea_tabular.dat.sav provides a listing of the design parameter values and objective
function values for all 2,000 design points evaluated during the running of the EA. Figure 2.16(a) shows the popu-
lation of 50 randomly selected design points that comprise the first generation of the EA, and Figure 2.16(b) shows
the final population of 50 design points, where most of the 50 points are clustered near (z1, z2) = (0.98,0.95).

As described above, an EA is not well-suited to an optimization problem involving a smooth, differentiable objec-
tive such as the Rosenbrock function. Rather, EAs are better suited to optimization problems where conventional
gradient-based optimization fails, such as situations where there are multiple local optima and/or gradients are
not available. In such cases, the computational expense of an EA is warranted since other optimization methods
are not applicable or impractical. In many optimization problems, EAs often quickly identify promising regions
of the design space where the global minimum may be located. However, an EA can be slow to converge to the
optimum. For this reason, it can be an effective approach to combine the global search capabilities of a EA with
the efficient local search of a gradient-based algorithm in a hybrid optimization strategy. In this approach, the op-
timization starts by using a few iterations of a EA to provide the initial search for a good region of the parameter
space (low objective function and/or feasible constraints), and then it switches to a gradient-based algorithm (us-
ing the best design point found by the EA as its starting point) to perform an efficient local search for an optimum
design point. More information on this hybrid approach is provided in Chapter 10.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

48

CHAPTER 2. DAKOTA TUTORIAL

strategy,
single_method
graphics, tabular_graphics_data

method,
coliny_ea

max_iterations = 100
max_function_evaluations = 2000
seed = 11011011
population_size = 50
fitness_type merit_function
mutation_type offset_normal
mutation_rate 1.0
crossover_type two_point
crossover_rate 0.0
replacement_type chc = 10

model,
single

variables,

continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface,

direct
analysis_driver = ’rosenbrock’

responses,

num_objective_functions = 1

no_gradients
no_hessians

DAKOTA INPUT FILE - dakota_rosenbrock_ea_opt.

in

Figure 2.15: Rosenbrock evolutionary algorithm optimization example: the DAKOTA input file.

In addition to the evolutionary algorithm capabilities in the coliny_ea method, there is a single-objective ge-
netic algorithm method called soga. For more information on soga, see Chapter 7.

2.4.2.6 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, i.e., locally there exists no other feasible vector that would improve

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 49

1 (C) rosenbrock| | ! AN\ 7
. (= rosenbrock|
initial pop o final DO

e 2 _na pop N
1 2 -2 1 0
X1

(b)

Figure 2.16: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial and (b)
final populations selected by the evolutionary algorithm.

some objective without causing a simultaneous worsening in at least one other objective. Thus a feasible point X’
from which small moves improve one or more objectives without worsening any others is not Pareto optimal: it
is said to be “dominated” and the points along the Pareto front are said to be “non-dominated”.

Often multi-objective problems are addressed by simply assigning weights to the individual objectives, summing
the weighted objectives, and turning the problem into a single-objective one which can be solved with a variety
of optimization techniques. While this approach provides a useful “first cut” analysis (and is supported within
DAKOTA—see Section 7.3), this approach has many limitations. The major limitation is that a local solver with
a weighted sum objective will only find one point on the Pareto front; if one wants to understand the effects of
changing weights, this method can be computationally expensive. Since each optimization of a single weighted
objective will find only one point on the Pareto front, many optimizations must be performed to get a good
parametric understanding of the influence of the weights and to achieve a good sampling of the entire Pareto
frontier.

Starting with version 3.2 of DAKOTA, a capability to perform multi-objective optimization based on a genetic
algorithm method has been available. This method is called moga. It is based on the idea that as the population
evolves in a GA, solutions that are non-dominated are chosen to remain in the population. Until version 4.0 of
DAKOTA, there was a selection_type choice of domination_count that performed a custom fitness assessment and
selection operation together. As of version 4.0 of DAKOTA, that functionality has been broken into separate,
more generally usable fitness assessment and selection operators called the domination_count fitness assessor and
below_limit selector respectively. The effect of using these two operators is the same as the previous behavior
of the domination_count selector. This means of selection works especially well on multi-objective problems
because it has been specifically designed to avoid problems with aggregating and scaling objective function values
and transforming them into a single objective. Instead, the fitness assessor works by ranking population members
such that their resulting fitness is a function of the number of other designs that dominate them. The below _limit
selector then chooses designs by considering the fitness of each. If the fitness of a design is above a certain limit,
which in this case corresponds to a design being dominated by more than a specified number of other designs, then
it is discarded. Otherwise it is kept and selected to go to the next generation. The one catch is that this selector
will require that a minimum number of selections take place. The shrinkage _percentage determines the
minimum number of selections that will take place if enough designs are available. It is interpreted as a percentage

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

50 CHAPTER 2. DAKOTA TUTORIAL

of the population size that must go on to the subsequent generation. To enforce this, the below_limit selector makes
all the selections it would make anyway and if that is not enough, it relaxes its limit and makes selections from
the remaining designs. It continues to do this until it has made enough selections. The moga method has many
other important features. Complete descriptions can be found in the DAKOTA Reference Manual [3].

Figure 2.17 shows an example input file that demonstrates some of the multi-objective capabilities available with
the moga method.

DAKOTA INPUT FILE - dakota_mogatestl.in

strategy,
single
graphics tabular_graphics_data

method,

moga

output silent

seed = 10983

final_ solutions = 3

max_function_evaluations = 2500

initialization_type unique_random

crossover_type shuffle_random
num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count

replacement_type below_limit = 6
shrinkage_percentage = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 40

variables,
continuous_design = 3
initial_ point 0 0 0
4
4

upper_bounds 4 4
lower_bounds - -4 -4
descriptors rx1’ 'x27 'x37
interface,
system
analysis_driver = 'mogatestl’
responses,
num_objective_functions = 2

no_gradients
no_hessians

Figure 2.17: Multiple objective genetic algorithm (MOGA) example: the DAKOTA input file.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 51

This example has three input variables and two objectives. The example uses objectives different from the Rosen-
brock function because we wanted to demonstrate the capability on a problem with two conflicting objectives.
This example is taken from a testbed of multi-objective problems [21]. In this example, the three best solutions
(as specified by final_solutions =3) are written to the output. Additionally, final results from moga are
output to a file called finaldatal.dat in the directory in which you are running. This finaldatal.dat
file is simply a list of inputs and outputs. Plotting the output columns against each other allows one to see the
Pareto front generated by moga. Figure 2.18 shows an example of the Pareto front for this problem. Note that
a Pareto front easily shows the tradeoffs between Pareto optimal solutions. For example, look at the point with
fl and f2 values equal to (0.9, 0.23). One cannot improve (minimize) the value of objective function f1 without
increasing the value of f2: another point on the Pareto front, (0.63, 0.63) represents a better value of objective fl
but a worse value of objective 2.

MOGA Test Problem #1 - Concave Pareto Frontier
1 T T T

09r 1

08r 1

0.7r 1

061 "% 1
A

& 051 ey |

0.4 % 1

03" :
%
0.2 *%tk]
#*
01" L
%
0 1 1 | 1 1 | 1 | |

0 0.1 62 03 04 05 06 07 08 089 1
F1

Figure 2.18: Multiple objective genetic algorithm (MOGA) example: Pareto front showing tradeoffs between
functions f1 and 2.

Sections 7.2 and 7.3 provide more information on multiobjective optimization. There are three detailed examples
provided in Section 22.11.

2.4.3 Uncertainty Quantification

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

52 CHAPTER 2. DAKOTA TUTORIAL

variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications.

The subsection demonstrates the use of several methods of uncertainty quantification methods built into DAKOTA.
These examples include Monte Carlo random sampling, reliability methods, the representation of a stochastic
process by a polynomial chaos expansion, and interval analysis.

2.4.3.1 Monte Carlo Sampling

Figure 2.19 shows the DAKOTA input file for an example problem that demonstrates some of the random sampling
capabilities available in DAKOTA. In this example, the design parameters, x1 and x2, will be treated as uncertain
parameters that have uniform distributions over the interval [-2, 2]. This is specified in the variables section of the
input file, beginning with the keyword uniform_uncertain. Another change from earlier input files, such as
Figure 2.5, occurs in the responses section, where the keyword num_response_functions is used in place
of num_objective_functions. The final changes to the input file occur in the method section, where the
keyword sampling is used; “nond” is an abbreviation for nondeterministic. The other keywords in the methods
section of the input file specify the number of samples (200), the seed for the random number generator (17),
the sampling method (random), and the response threshold (100.0). The seed specification allows a user to
obtain repeatable results from multiple runs. If a seed value is not specified, then DAKOTA’s sampling methods
are designed to generate nonrepeatable behavior (by initializing the seed using a system clock). The keyword
response_thresholds allows the user to specify threshold values for which DAKOTA will compute statistics
on the response function output. Note that a unique threshold value can be specified for each response function.

In this example, DAKOTA will select 200 design points from within the parameter space, evaluate the value of
Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200 response
values.

This DAKOTA input file is executed using the following command:
dakota dakota_rosenbrock_nond.in > nond.out

Figure 2.20 shows example results from this sampling method. See the nond.out.sav file in directory
Dakota/examples/tutorial for comparison with results produced by DAKOTA. Note that your results
will differ from those in this file if your seed value differs or if no seed is specified.

As shown in Figure 2.20, the statistical data on the 200 Monte Carlo samples is printed at the end of the output
file in the section that starts with “Statistics based on 200 samples.” In this section summarizing moment-based
statistics, DAKOTA outputs the mean, standard deviation, skewness, and kurtosis estimates for each of the re-
sponse functions. For example, the mean of the Rosenbrock function given uniform input uncertainties on the
input variables is 455.4 and the standard deviation is 536.8. This is a very large standard deviation, due to the fact
that the Rosenbrock function varies by three orders of magnitude over the input domain. The skewness is posi-
tive, meaning this is a right-tailed distribution, not a symmetric distribution. Finally, the kurtosis (a measure of the
“peakedness” of the distribution) indicates that this is a strongly peaked distribution (note that we use a central,
standardized kurtosis so that the kurtosis of a normal is zero). After the moment-related statistics, the 95% con-
fidence intervals on the mean and standard deviations are printed. This is followed by the fractions (“Probability
Level”) of the response function values that are below the response threshold values specified in the input file. For
example, 34 percent of the sample inputs resulted in a Rosenbrock function value that was less than or equal to
100, as shown in the line listing the cumulative distribution function values. Finally, there are several correlation

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 53

matrices printed at the end, showing simple and partial raw and rank correlation matrices. Correlations provide
an indication of the strength of a monotonic relationship between input and outputs. More detail on correlation
coefficients and their interpretation can be found in Section 6.2.1. More detail about sampling methods in general
can be found in Section 6.2. Finally, Figure 2.21 shows the locations of the 200 sample sites within the parameter
space of the Rosenbrock function for this example.

DAKOTA INPUT FILE - dakota_rosenbrock_nond.in

strategy,
single_method
graphics, tabular_graphics_data

method,
sampling
samples = 200 seed = 17
sample_type random
response_levels = 100.0
model,
single

variables,
uniform_uncertain =
lower_bounds -2.0 -2.0
0

upper_bounds 2. 2.0
descriptors rx1r o rx2!
interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_response_functions = 1
no_gradients
no_hessians

Figure 2.19: Monte Carlo sampling example: the DAKOTA input file.

2.4.3.2 Reliability Methods - via the Mean Value Method

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

54 CHAPTER 2. DAKOTA TUTORIAL

Statistics based on 200 samples:

Moment-based statistics for each response function:
Mean Std Dev Skewness Kurtosis
response_fn_1 4.5540183516e+02 5.3682678089%e+02 1.6661798252e+00 2.7925726822e+00

95% confidence intervals for each response function:
LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev
response_fn_1 3.8054757609e+02 5.3025609422e+02 4.8886795789%e+02 5.9530059589e+02

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_ 1:
Response Level Probability Level Reliability Index General Rel Index

1.0000000000e+02 3.4000000000e-01

Simple Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1l 1.00000e+00
x2 -5.85097e-03 1.00000e+00
response_fn_1 -9.57746e-02 -5.08193e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1
x1l -1.1465%9e-01
x2 =5.11111e-01

Simple Rank Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 —6.03315e-03 1.00000e+00
response_fn_1 -1.15360e-01 -5.04661e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1
x1 -1.37154e-01
x2 -5.08762e-01

Figure 2.20: Results of Monte Carlo Sampling on the Rosenbrock Function

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 55

Figure 2.21: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both 21 and x,.

Figure 2.22 shows the DAKOTA input file for an example problem that demonstrates the simplest reliability
method, called the mean value method (also referred to as the Mean Value First Order Second Moment method).
It is specified with method keyword local_reliability. This method calculates the mean and variance of
the response function based on information about the mean and variance of the inputs and gradient information
at the mean of the inputs. The mean value method is extremely cheap computationally (only five runs were
required for the textbook function), but can be quite inaccurate, especially for nonlinear problems and/or problems
with uncertain inputs that are significantly non-normal. More detail on the mean value method can be found in
Section 6.3.1, and more detail on reliability methods in general (including the more advanced methods) is found
in Section 6.3.

Example output from the mean value method is displayed in Figure 2.23. Note that since the mean of both inputs
is 1, the mean value of the output for response 1 is zero. However, the mean values of the constraints are both 0.5.
The mean value results indicate that variable x1 is more important in constraint 1 while x2 is more important in
constraint 2, which is the case based on Equation 2.3.

This DAKOTA input file is executed using the following command:
dakota dakota_mv.in > mv.out

See the file mv.out .savin Dakota/examples/tutorial for comparison with results from DAKOTA.

2.4.3.3 Polynomial Chaos

The term “Polynomial Chaos” refers to the representation of a stochastic process as a polynomial expansion in
random (or stochastic) variables. This representation acts as a response surface that maps stochastic inputs to
stochastic outputs. Desired statistics can then be obtained from the response surface either analytically or by
re-sampling the fast surrogate. Exponential convergence of the error with increasing polynomial order can be
obtained by using (an) orthogonal polynomial series whose weighting function(s) is/are the probability density
functions of the stochastic inputs. Coefficients in the Chaos expansion are determined through orthogonal projec-
tion. For non-intrusive implementations, such as in DAKOTA, numerical integration via quadrature or cubature is
used to evaluate the orthogonal projections. Additional details regarding the method are provided in Section 6.4.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

56 CHAPTER 2. DAKOTA TUTORIAL

test file with a specific test. The 1is used to designate lines
interface,
system asynch
analysis_driver = ’'text_book’

variables,

lognormal_uncertain = 2
means = 1. 1.
std_deviations = 0.5 0.5
descriptors = 'TFlln’ ’'TF21n’

responses,
num_response_functions = 3
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1l.e-4
no_hessians

strategy,
single_method #graphics

method,
local_reliability

Figure 2.22: Mean Value Reliability Method: the DAKOTA input file.

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expansions
is shown in Figure 2.24, dakota_pce.in. In this example, we compute CDF probabilities for six response
levels of Rosenbrock’s function. Since Rosenbrock is a fourth order polynomial and we employ a fourth-order
expansion using an optimal basis (Legendre for uniform random variables), we can readily obtain a polynomial
expansion which exactly matches the Rosenbrock function. In this example, we select Gaussian quadratures using
an anisotropic approach (fifth-order quadrature in z; and third-order quadrature in x), resulting in a total of 15
function evaluations to compute the PCE coefficients.

The tensor product quadature points upon which the expansion is calculated are shown in Figure 2.25. The tensor
product generates all combinations of values from each individual dimension: it is an all-way pairing of points.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be
evaluated numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be
evaluated on the expansion to compute the CDF probabilities. In Figure 2.26, excerpts from the results summary
are presented, where we first see a summary of the PCE coefficients which exactly reproduce Rosenbrock for a
Legendre polynomial basis. The analytic statistics for mean, standard deviation, and COV are then presented.
For example, the mean is 455.66 and the standard deviation is 606.56. The moments are followed by global
sensitivity indices (Sobol indices).This example shows that variable x1 has the largest main effect (0.497) as
compared with variable x2 (0.296) or the interaction between x1 and x2 (0.206). After the global sensitivity
indices, the local, analytic random variable sensitivities are presented, evaluated at the mean values. Finally, we
see the numerical results for the CDF probabilities based on 10000 samples performed on the expansion. For

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS

57

MV Statistics for response_fn_1:
Approximate Mean Response = 0.0000000000e+00
Approximate Standard Deviation of Response = 0.0000000000e+00
Importance Factors not available.

MV Statistics for response_fn_2:
Approximate Mean Response =
Approximate Standard Deviation of Response =
Importance Factor for variable TFlln =
Importance Factor for variable TF21ln =

MV Statistics for response_fn_3:
Approximate Mean Response = 5.0000000000e-01
Approximate Standard Deviation of Response = 1.0307764064e+00
Importance Factor for variable TFlln = 5.8823529412e-02
Importance Factor for variable TF21ln = 9.4117647059%9e-01

.0000000000e-01
.0307764064e+00
.4117647059e-01
.8823529412e-02

(62NN RN @]

Figure 2.23: Results of the Mean Value Method on the Textbook Function

strategy,
single_method #graphics

method,

polynomial_chaos
quadrature_order =53
samples = 10000
seed = 12347 rng rnum2
response_levels =
.1 1. 50. 100. 500. 1000.
variance_based_decomp #univariate_effects

variables,

uniform_uncertain = 2
lower_bounds = -2. =2.
upper_bounds = 2. 2.
descriptors = 'x1" "x2'

interface,

direct

analysis_driver = ’rosenbrock’

responses,
num_response_functions = 1
no_gradients
no_hessians

Figure 2.24: DAKOTA input file for performing UQ using polynomial chaos expansions.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

58 CHAPTER 2. DAKOTA TUTORIAL

((“ 0 rosenbrock |
® TPGauss.pts | i

Figure 2.25: Rosenbrock polynomial chaos example: tensor product quadrature points.

example, the probability that the Rosenbrock function is less than 100 over these two uncertain variables is 0.342.
Note that this is a very similar estimate to what was obtained using 200 Monte Carlo samples, with fewer function
evaluations.

2.4.3.4 Interval Analysis

Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes that nothing
is known about an epistemic uncertain variable except that its value lies somewhere within an interval. In this
situation, it is NOT assumed that the value has a uniform probability of occuring within the interval. Instead, the
interpretation is that any value within the interval is a possible value or a potential realization of that variable. In
interval analysis, the uncertainty quantification problem is one of determining the resulting bounds on the output
(defining the output interval) given interval bounds on the inputs. Again, any output response that falls within the
output interval is a possible output with no frequency information assigned to it.

We can do interval analysis using either global_interval_est or local_interval_est. In the global
approach, one uses either a global optimization method or a sampling method to assess the bounds, whereas the
local method uses gradient information in a derivative-based optimization approach.

An example of interval estimation is found in the test file dakota_ug_interval. in, and also in Figure 2.27,
with example results in Figure 2.28. This example is a demonstration of calculating interval bounds for three
outputs of the cantilever beam problem. The cantilever beam problem is described in detail in Section 22.9.
Given input intervals of [1,10] on beam width and beam thickness, we can see that the interval estimate of beam
weight is approximately [1,100].

2.4.4 User Supplied Simulation Code Examples

This subsection provides examples of how to use DAKOTA to drive user supplied black box code.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS

59

Polynomial Chaos coefficients for response_fn_1:
coefficient ul u2
4.5566666667e+02 PO PO
-4.0000000000e+00 Pl PO
9.1695238095e+02 P2 PO
-9.9475983006e-14 P3 PO
3.6571428571e+02 P4 PO
-5.3333333333e+02 PO P1
-3.9968028887e-14 Pl Pl
-1.0666666667e+03 P2 P1
—-3.3573144265e-13 P3 Pl
1.2829737273e-12 P4 P1
2.6666666667e+02 PO P2
2.2648549702e-13 Pl P2
4.8849813084e-13 P2 P2
2.8754776338e-13 P3 P2
2.8477220582e-13 P4 P2

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis
response_fn_1
expansion: 4.5566666667e+02 6.0656024184e+02
numerical: 4.5566666667e+02 6.0656024184e+02 1.9633285271e+00 3.3633861456e+00

Covariance among response functions:
[[3.6791532698e+05 1]

Local sensitivities for each response function evaluated at uncertain variable means:
response_fn_1:
[-2.0000000000e+00 2.4055757386e-13 1]

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

Main Total
4.9746891383e-01 7.0363551328e-01 x1
2.9636448672e-01 5.0253108617e-01 x2

Interaction
2.0616659946e-01 x1 x2

Statistics based on 10000 samples performed on polynomial expansion:

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index General Rel Index

1.0000000000e-01 1.9000000000e-03
1.0000000000e+00 1.3600000000e-02
5.0000000000e+01 2.4390000000e-01
1.0000000000e+02 3.4230000000e-01
5.0000000000e+02 7.1090000000e-01
1.0000000000e+03 8.5240000000e-01

Figure 2.26: Excerpt of UQ output for polynomial chaos example.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

CHAPTER 2. DAKOTA TUTORIAL

single_method tabular_graphics_data

global_interval_est ego
seed = 1234567 rng rnum2
output verbose

variables,
interval_uncertain = 2
num_intervals =
interval_bounds =

descriptors ’'beam_width’ ’'beam_thickness’
continuous_state = 4

interface,

responses,

no_gradients
no_hessians

11
interval_probs = 1.0 1.0
1. 10. 1. 10

initial_state = 40000. 29.E+6 500. 1000.
descriptors = 'R’ 'E" 'X' 'Y’
direct
analysis_driver = ’cantilever’
num_response_functions = 3
response_descriptors = ‘weight’ ’stress’ ’displ’

Figure 2.27: DAKOTA input file for performing UQ using interval analysis.

Min and Max estimated values for each response function:
Min = 1.0000169352e+00 Max = 9.9999830649%e+01

= -9.7749994284e-01 Max = 2.1499428450e+01
-9.9315677360e-01 Max = 6.7429714485e+01

Figure 2.28: Excerpt of UQ output for interval example.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.4. EXAMPLE PROBLEMS 61

2.4.4.1 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test
functions that are compiled into DAKOTA. In engineering applications, it is much more common to use the
system or fork interface approaches within DAKOTA to manage external simulation codes. In both of these
cases, the communication between DAKOTA and the external code is conducted through the reading and writ-
ing of short text files. For this example, the C++ program rosenbrock.C in Dakota/test is used as the
simulation code. This file is compiled to create the stand-alone rosenbrock executable that is referenced as
the analysis_driver in Figure 2.29. This stand-alone program performs the same function evaluations as
DAKOTA’s internal Rosenbrock test function.

Figure 2.29 shows the text of the DAKOTA input file named dakota_-rosenbrock_syscall.in that is
provided in the directory Dakota/examples/tutorial. The only differences between this input file and
the one in Figure 2.7 occur in the interface keyword section. The keyword system indicates that DAKOTA
will use system calls to create separate Unix processes for executions of the user-supplied simulation code. The
name of the simulation code, and the names for DAKOTA’s parameters and results file are specified using the
analysis_driver,parameters_file, and results_file keywords, respectively.

This example problem is executed using the command:
dakota dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization example since
the system interface method has additional process creation and file I/O overhead, as compared to the inter-
nal communication that occurs when the direct interface method is used. File syscall.out.sav in the
Dakota/examples/tutorial directory permits comparison with output results you get by executing the
command given above.

To gain a better understanding of what exactly DAKOTA is doing with the system interface approach, add the
keywords file_tag and file_save to the interface specification and re-run DAKOTA. Check the listing of
the local directory and you will see many new files with names such as params.in.1, params.in. 2, etc.,
and results.out.1, results.out.2, etc. There is one params.in.X file and one results.out.X
file for each of the function evaluations performed by DAKOTA. This is the file listing for params.in.1:

2 variables

-1.200000000000000e+00 x1
1.000000000000000e+00 x2

1 functions
ASV_1
derivative_variables
DVV_1
DVV_2
analysis_components

O NN

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the
arrays consist of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis
components (AC). For the variables array, the first line gives the total number of variables (2) and the “variables”
string identifier, and the subsequent two lines provide the array listing for the two variable values (-1.2 and 1.0) and
descriptor tags (“x1” and “x2” from the DAKOTA input file). The next array conveys the ASV, which indicates
what simulator outputs are needed. The first line of the array gives the total number of response functions (1) and
the “functions” string identifier, followed by one ASV code and descriptor tag (“ASV_1") for each function. In
this case, the ASV value of 1 indicates that DAKOTA is requesting that the simulation code return the response

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

62 CHAPTER 2. DAKOTA TUTORIAL

function value in the file results.out .X. (Possible ASV values: 1 = value of response function value, 2 =
response function gradient, 4 = response function Hessian, and any sum of these for combinations up to 7 =
response function value, gradient, and Hessian; see 12.7 for more detail.) The next array provides the DVYV,
which defines the variable identifiers used in computing derivatives. The first line of the array gives the number
of derivative variables (2) and the “derivative_variables” string identifier, followed by the listing of the two DVV
variable identifiers (the first and second variables) and descriptor tags (“DVV_1" and “DVV_2”). The final array
provides the AC array used to provide additional strings for use by the simulator (e.g., to provide the name of
a particular mesh file). The first line of the array gives the total number of analysis components (0) and the
“analysis_components” string identifier, followed by the listing of the array, which is empty in this case.

The executable program rosenbrock reads in the params. in.X file and evaluates the objective function at the

DAKOTA INPUT FILE - dakota_rosenbrock_syscall.in

strategy,
single_method
graphics, tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = le-4
model,
single
variables,
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface,
system
analysis_driver = ’rosenbrock’
parameters_file = ’'params.in’
results_file = ’'results.out’

responses,
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1l.e-5
no_hessians

Figure 2.29: DAKOTA input file for gradient-based optimization using the system call interface to an external
rosenbrock simulator.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

2.5. WHERE TO GO FROM HERE 63

given values for 1 and 2. Then, rosenbrock writes out the objective function data to the results.out.X file.
Here is the listing for the file results.out.1:

2.420000000000000e+01 £

The value shown above is the value of the objective function, and the descriptor ‘f” is an optional tag returned by
the simulation code. When the system call has completed, DAKOTA reads in the data from the results.in.X
file and processes the results. DAKOTA then continues with additional executions of the rosenbrock program
until the optimization process is complete.

2.4.4.2 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the params.in.X
file and the results.out.X file, as described above. Typically, this occurs when the simulation code is
a commercial or proprietary software product that has specific input file and output file formats. In such cases,
it is common to replace the executable program name in the DAKOTA input file with the name of a Unix shell
script containing a sequence of commands that read and write the necessary files and run the simulation code. For
example, the executable program named rosenbrock listed in Figure 2.29 could be replaced by a Unix C-shell
script named simulator_script, with the script containing a sequence of commands to perform the following
steps: insert the data from the parameters.in.X file into the input file of the simulation code, execute the
simulation code, post-process the files generated by the simulation code to compute response data, and return the
response data to DAKOTA in the results.out.X file. The steps that are typically used in constructing and
using a Unix shell script are described in Section 17.1.

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including parameter studies, vari-
ous types of optimization, and uncertainty quantification sampling. More information on the DAKOTA input file
syntax is provided in the remaining chapters in this manual and in the DAKOTA Reference Manual [3]. Addi-
tional example problems that demonstrate some of DAKOTA’s advanced capabilities are provided in Chapter 6,
Chapter 9, Chapter 10, Chapter 17, and Chapter 22.

Here are a few pointers to sections of this manual that many new users find useful:
o Chapter 16 describes the different DAKOTA output file formats, including commonly encountered error
messages.

e Chapter 17 demonstrates how to employ DAKOTA with a user-supplied simulation code.
Most DAKOTA users will follow the approach described in Chapter 17.

e Chapter 19 provides guidelines on how to choose an appropriate optimization, uncertainty quantification,
or parameter study method based on the characteristics of your application.

e Chapter 20 describes the file restart and data re-use capabilities of DAKOTA.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

64

CHAPTER 2. DAKOTA TUTORIAL

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Chapter 3

DAKOTA Capability Overview

3.1 Purpose

This chapter provides a brief overview of DAKOTA’s capabilities. Emerging capabilites in solution verification
and Bayesian calibration/uncertainty quantificaiton are not yet documented here. Additional details and example
problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within simulation models.
DAKOTA users may select from four parameter study methods.

Multidimensional: Forms a regular lattice or grid in an n-dimensional parameter space, where the user specifies
the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter space,
where the user specifies the number of steps used in the study.

Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby points along the
coordinate axes of the parameter space. The user selects the number of steps and the step size.

List: The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate response data
from the simulation code.

Additional information on these methods is provided in Chapter 4.

3.3 Design of Experiments

Design of experiments are often used to explore the parameter space of an engineering design problem, for exam-
ple to perform global sensitivity analysis. In design of experiments, especially design of computer experiments,
one wants to generate input points that provide good coverage of the input parameter space. There is significant
overlap between design of experiments and sampling methods, and both techniques can yield similar results about
response function behavior and the relative importance of the input variables. We consider design of experiment

66 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

methods to generate sets of uniform random variables on the interval [0, 1], with the goal of characterizing the
behavior of the response functions over the input parameter ranges of interest. Uncertainty quantification, in con-
trast, involves characterizing the uncertain input variables with probability distributions such as normal, Weibull,
triangular, etc., sampling from the input distributions, and propagating the input uncertainties to obtain a cumu-
lative distribution function on the output or system response. We typically use the Latin Hypercube Sampling
software (also developed at Sandia) for generating samples on input distributions used in uncertainty quantifi-
cation. LHS is explained in more detail in the subsequent section 3.4. Two software packages are available in
DAKOTA for design of computer experiments, DDACE (developed at Sandia Labs) and FSUDACE (developed
at Florida State University).

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package includes both
stochastic sampling methods and classical design of experiments methods [[43]. The stochastic methods are
Monte Carlo (random) sampling, Latin Hypercube sampling, orthogonal array sampling, and orthogonal array-
latin hypercube sampling. The orthogonal array sampling allows for the calculation of main effects. The DDACE
package currently supports variables that have either normal or uniform distributions. However, only the uni-
form distribution is available in the DAKOTA interface to DDACE. The classical design of experiments meth-
ods in DDACE are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling
method also is available. DDACE is available under a GNU Lesser General Public License and is distributed with
DAKOTA.

FSUDace (Florida State University Design and Analysis of Computer Experiments): The FSUDace pack-
age provides quasi-Monte Carlo sampling (Halton and Hammersley) and Centroidal Voronio Tesselation (CVT)
methods. The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy
refers to the nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences tend to
cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences,
especially if one is interested in the uniformity of projections of the point sets onto lower dimensional faces of
the hypercube. CVT does very well volumetrically: it spaces the points fairly equally throughout the space, so
that the points cover the region and are isotropically distributed with no directional bias in the point placement.
FSUDace is available under a GNU Lesser General Public License and is distributed with DAKOTA.

PSUADE (Problem Solving Environment for Uncertainty Analysis and Design Exploration): PSUADE is
a Lawrence Livermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantifica-
tion, and optimization. Its features include non-intrusive and parallel function evaluations, sampling and analysis
methods, an integrated design and analysis framework, global optimization, numerical integration, response sur-
faces (MARS and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [142].
DAKOTA includes a prototype interface to its MOAT sampling method, a valuable tool for global sensitivity
analysis.

Additional information on these methods is provided in Chapter 5.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) involve the computa-
tion of probabilistic information about response functions based on sets of simulations taken from the specified
probability distributions for uncertain input parameters. Put another way, these methods perform a forward uncer-
tainty propagation in which probability information for input parameters is mapped to probability information for
output response functions. We usually distinguish the UQ methods in terms of their capability to handle aleatory
or epistemic uncertainty. Input uncertainties may be characterized as either aleatory uncertainties, which are irre-
ducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from
a lack of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

3.4. UNCERTAINTY QUANTIFICATION 67

are commonly used for computing response distribution statistics based on input probability distribution speci-
fications. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications. The aleatory UQ methods
in DAKOTA include various sampling-based approaches (e.g., Monte Carlo and Latin Hypercube sampling), local
and global reliability methods, and stochastic expansion approaches. The epistemic UQ methods include interval
analysis and Dempster-Shafer evidence theory.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and Latin Hy-
percube sampling methods, which can be used with probabilistic variables in DAKOTA that have the following
distributions: normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet,
weibull, poisson, binomial, negative binomial, geometric, hypergeometric, and user-supplied histograms. In addi-
tion, LHS accounts for correlations among the variables [90], which can be used to accommodate a user-supplied
correlation matrix or to minimize correlation when a correlation matrix is not supplied. The LHS package cur-
rently serves two purposes: (1) it can be used for uncertainty quantification by sampling over uncertain variables
characterized by probability distributions, or (2) it can be used in a DACE mode in which any design and state
variables are treated as having uniform distributions (see the all_variables flag in the DAKOTA Reference
Manual [3]). The LHS package historically came in two versions: “old” (circa 1980) and “new” (circa 1998), but
presently only the latter is supported in DAKOTA, requiring a Fortran 90 compiler. This “new” LHS is available
under a separate GNU Lesser General Public License and is distributed with DAKOTA. In addition to a standard
sampling study, we support the capability to perform “incremental” LHS, where a user can specify an initial LHS
study of N samples, and then re-run an additional incremental study which will double the number of samples
(to 2N, with the first N being carried from the initial study). The full incremental sample of size 2N is also
a Latin Hypercube, with proper stratification and correlation. Finally, DAKOTA offers preliminary support for
importance sampling using LHS, specified with importance.

Reliability Methods: This suite of methods includes both local and global reliability methods. Local methods
include first- and second-order versions of the Mean Value method (MVFOSM and MVSOSM) and a variety of
most probable point (MPP) search methods, including the Advanced Mean Value method (AMV and AMV?),
the iterated Advanced Mean Value method (AMV+ and AMV?2+), the Two-point Adaptive Nonlinearity Approx-
imation method (TANA-3), and the traditional First Order and Second Order Reliability Methods (FORM and
SORM) [80]. Each of the MPP search techniques solve local optimization problems in order to locate the MPP,
which is then used as the point about which approximate probabilities are integrated (using first- or second-
order integrations in combination with refinements based on importance sampling). Reliability mappings may
involve computing reliability and probability levels for prescribed response levels (forward reliability analysis,
commonly known as the reliability index approach or RIA) or computing response levels for prescribed reliability
and probability levels (inverse reliability analysis, commonly known as the performance measure approach or
PMA). Approximation-based MPP search methods (AMYV, AMV?, AMV+, AMV?2+, and TANA) may be applied
in either x-space or u-space, and mappings may involve either cumulative or complementary cumulative distribu-
tion functions. Global reliability methods are designed to handle nonsmooth and multimodal failure surfaces, by
creating global approximations based on Gaussian process models. They accurately resolve a particular contour
of a response function and then estimate probabilities using multimodal adaptive importance sampling.

Stochastic Expansion Methods: The objective of these techniques is to characterize the response of systems
whose governing equations involve stochastic coefficients. The development of these techniques mirrors that of
deterministic finite element analysis utilizing the notions of projection, orthogonality, and weak convergence [62], [
Rather than estimating point probabilities, they form an approximation to the functional relationship between re-
sponse functions and their random inputs, which provides a more complete uncertainty representation for use in
multi-code simulations. Expansion methods include the Wiener-Askey generalized polynomial chaos expansion
(PCE), which employs a family of multivariate orthogonal polynomials that are well matched to particular in-
put probability distributions, and stochastic collocation (SC), which employs multivariate Lagrange interpolation
polynomials. For PCE, expansion coefficients may be evaluated using a spectral projection approach (based on

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

68 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

sampling, quadrature, or sparse grid methods for integration) or a point collocation approach (based on linear
regression). For SC, interpolants may be formed over tensor-product quadrature grids or Smolyak sparse grids.
Both methods provide analytic response moments; however, CDF/CCDF probabilities are evaluated by sampling
on the expansion.

Interval Analysis: Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes
that nothing is known about an epistemic uncertain variable except that its value lies somewhere within an interval.
In this situation, it is NOT assumed that the value has a uniform probability of occuring within the interval.
Instead, the interpretation is that any value within the interval is a possible value or a potential realization of that
variable. In interval analysis, the uncertainty quantification problem is one of determining the resulting bounds
on the output (defining the output interval) given interval bounds on the inputs. Again, any output response that
falls within the output interval is a possible output with no frequency information assigned to it.

We have the capability to perform interval analysis using either global or local methods. In the global approach,
one uses either a global optimization method (based on a Gaussian process surrogate model) or a sampling method
to assess the bounds. The local method uses gradient information in a derivative-based optimization approach,
using either SQP (sequential quadratic programming) or a NIP (nonlinear interior point) method to obtain bounds.

Dempster-Shafer Theory of Evidence: The objective of Evidence theory is to model the effects of epistemic
uncertainties. Epistemic uncertainty refers to the situation where one does not know enough to specify a proba-
bility distribution on a variable. Sometimes epistemic uncertainty is referred to as subjective, reducible, or lack
of knowledge uncertainty. In contrast, aleatory uncertainty refers to the situation where one does have enough
information to specify a probability distribution. In Dempster-Shafer theory of evidence, the uncertain input vari-
ables are modeled as sets of intervals. The user assigns a basic probability assignment (BPA) to each interval,
indicating how likely it is that the uncertain input falls within the interval. The intervals may be overlapping,
contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the simulation
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a probability
estimate that is consistent with the evidence, and plausibility is the uppder bound on a probability estimate that is
consistent with the evidence. In addition to the full evidence theory structure, we have a simplified capability for
users wanting to perform pure interval analysis (e.g. what is the interval on the output given intervals on the input)
using either global or local optimization methods. Interval analysis is often used to model epistemic variables in
nested analyses, where probability theory is used to model aleatory variables.

Additional information on these methods is provided in Chapter 6.

3.5 Optimization

Several optimization software packages have been integrated with DAKOTA. These include freely-available soft-
ware packages developed by research groups external to Sandia Labs, Sandia-developed software that has been
released to the public under GNU licenses, and commercially-developed software. These optimization software
packages provide the DAKOTA user with access to well-tested, proven methods for use in engineering design
applications, as well as access to some of the newest developments in optimization algorithm research.

HOPSPACK: is a library that enables the implementation of hybrid optimization algorithms [116]. Currently the
only method exposed is an asynchronous implementation of generating set search known as asynchronous parallel
pattern search (APPS) [74]. It can handle unconstrained problems as well as those with bound constraints, linear
constraints [76], and general nonlinear constraints [75]. APPS was previously integrated with DAKOTA via the
APPSPACK software, but is now integrated through it’s successor (HOPSPACK). HOPSPACK is available to the
public under the GNU LGPL and the source code is included with DAKOTA (web page: https://software.
sandia.gov/trac/hopspack).

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

https://software.sandia.gov/trac/hopspack
https://software.sandia.gov/trac/hopspack

3.5. OPTIMIZATION 69

COLINY: Methods for nongradient-based local and global optimization which utilize the Common Optimiza-
tion Library INterface (COLIN). COLINY currently includes evolutionary algorithms (including several ge-
netic algorithms and Evolutionary Pattern Search), simple pattern search, Monte Carlo sampling, and the DI-
RECT and Solis-Wets algorithms. COLINY also include interfaces to third-party optimizer COBYLA2. This
software is available to the public under a GNU Lesser General Public License (LGPL) through ACRO (A
Common Repository for Optimizers) and the source code for COLINY is included with DAKOTA (web page:
http://software.sandia.gov/trac/acro).

CONMIN (CONstrained MINimization): Methods for gradient-based constrained and unconstrained optimiza-
tion [146]. The constrained optimization algorithm is the method of feasible directions (MFD) and the uncon-
strained optimization algorithm is the Fletcher-Reeves conjugate gradient (CG) method. This software is freely
available to the public from NASA, and the CONMIN source code is included with DAKOTA.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained and unconstrained
optimization problems [148]. The algorithms available for constrained optimization are modified-MFD, SQP, and
sequential linear programming (SLP). The algorithms available for unconstrained optimization are the Fletcher-
Reeves CG method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT is a com-
mercial software product of Vanderplaats Research and Development, Inc. (web page: http://www.vrand.
com). Sandia National Laboratories and Los Alamos National Laboratory have limited seats for DOT. Other users
may obtain their own copy of DOT and compile it with the DAKOTA source code by following the steps given in
the file Dakota/INSTALL.

JEGA: provides SOGA and MOGA (single- and multi-objective genetic algorithms) optimization methods. The
SOGA method provides a basic GA optimization capability that uses many of the same software elements as the
MOGA method. The MOGA package allows for the formulation of multiobjective optimization problems without
the need to specify weights on the various objective function values. The MOGA method directly identifies non-
dominated design points that lie on the Pareto front through tailoring of its genetic search operators. The advantage
of the MOGA method versus conventional multiobjective optimization with weight factors (see Section 3.6), is
that MOGA finds points along the entire Pareto front whereas the multiobjective optimization method produces
only a single point on the Pareto front. The advantage of the MOGA method versus the Pareto-set optimization
strategy (see Section 3.9) is that MOGA is better able to find points on the Pareto front when the Pareto front
is nonconvex. However, the use of a GA search method in MOGA causes the MOGA method to be much more
computationally expensive than conventional multiobjective optimization using weight factors.

NCSUOpt: Nongradient-based optimizers from North Carolina State University, including DIRECT and, even-
tually, impicit filtering (web site: http://wwwi .ncsu.edu/~ctk/matlab_darts.html). We currently
incorporate only an implementation of the DIRECT (DIviding RECTangles) algorithm [57]. While this is some-
what redundant with DIRECT supplied by Coliny, we have found that NCCSU DIRECT performs better in some
cases, and presently we maintain both versions in DAKOTA.

NLPQLP: Methods for gradient-based constrained and unconstrained optimization problems using a sequen-
tial quadratic programming (SQP) algorithm [128]. NLPQLP is a commercial software product of Prof. Klaus
Schittkowski (web site: http://www.uni-bayreuth.de/departments/math/~kschittkowski/
nlpglp20.htm). Users may obtain their own copy of NLPQLP and compile it with the DAKOTA source code
by following the steps given in the file Dakota/INSTALL.

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems using a sequential
quadratic programming (SQP) algorithm [64]. NPSOL is a commercial software product of Stanford University
(web site: www.sbsi-sol-optimize.com). Sandia National Laboratories, Lawrence Livermore National Laboratory,
and Los Alamos National Laboratory all have site licenses for NPSOL. Other users may obtain their own copy of
NPSOL and compile it with the DAKOTA source code by following the steps given in the file Dakota/INSTALL.

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained, bound-constrained,

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

http://software.sandia.gov/trac/acro
http://www.vrand.com
http://www.vrand.com
http://www4.ncsu.edu/~ctk/matlab_darts.html
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpqlp20.htm

70 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

and nonlinearly constrained optimization problems [102]. OPT++ includes a variety of Newton-based meth-
ods (quasi-Newton, finite-difference Newton, Gauss-Newton, and full-Newton), as well as the Polak-Ribeire CG
method and the parallel direct search (PDS) method. OPT++ now contains a nonlinear interior point algorithm
for handling general constraints. OPT++ is available to the public under the GNU LGPL and the source code is
included with DAKOTA (web page: http://csmr.ca.sandia.gov/opt++).

PICO (Parallel Integer Combinatorial Optimization): PICO’s branch-and-bound algorithm can be applied to
nonlinear optimization problems involving discrete variables or a combination of continuous and discrete vari-
ables [34]. The discrete variables must be noncategorical (see Section 12.2.2). PICO is available to the public
under the GNU LGPL (web page: http://software.sandia.gov/trac/acro/wiki/Packages)
and the source code is included with DAKOTA as part of the Acro package. Notes: (1) PICO’s linear program-
ming solvers are not included with DAKOTA, (2) PICO is being migrated into COLINY and is not operational in
DAKOTA 5.1.

Additional information on these methods is provided in Chapter 7, as is a facility for using other solvers made
available to DAKOTA via shared libraries.

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle a wide variety of optimization
problems. This includes algorithms for constrained and unconstrained optimization, as well as algorithms for
gradient-based and nongradient-based optimization. Listed below are additional optimization capabilities that are
available in DAKOTA.

Multiobjective Optimization: There are three capabilities for multiobjective optimization in DAKOTA. First,
there is the MOGA capability described previously in Section 3.5. This is a specialized algorithm capability.
The second capability involves the use of response data transformations to recast a multiobjective problem as a
single-objective problem. Currently, DAKOTA supports the weighting factor approach for this transformation,
in which a composite objective function is constructed from a set of individual objective functions using a user-
specified set of weighting factors. This approach is optimization algorithm independent, in that it works with any
of the optimization methods listed in Section 3.5. Constraints are not affected by the weighting factor mapping;
therefore, both constrained and unconstrained multiobjective optimization problems can be formulated and solved
with DAKOTA, assuming selection of an appropriate constrained or unconstrained single-objective optimization
algorithm. Future multiobjective response data transformations for goal programming, normal boundary inter-
section, etc. are planned. The third capability is the Pareto-set optimization strategy described in Section 3.9.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

User-Specified or Automatic Scaling: Some optimization algorithms are sensitive to the relative scaling of prob-
lem inputs and outputs. With any optimizer or least squares solver, user-specified (and in some cases automatic or
logarithmic) scaling may be applied to continuous design variables, responses (objectives or residuals), nonlinear
inequality and equality constraints, and/or linear inequality and equality constraints.

Additional information on these capabilities is provided in Chapter 7.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

http://csmr.ca.sandia.gov/opt++
http://software.sandia.gov/trac/acro/wiki/Packages

3.7. NONLINEAR LEAST SQUARES FOR PARAMETER ESTIMATION 71

3.7 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a least squares
objective function (see Section 1.4.2). These problems commonly arise in parameter estimation and test/analysis
reconciliation. In practice, least squares solvers will tend to converge more rapidly than general-purpose opti-
mization algorithms when the residual terms in the least squares formulation tend towards zero at the solution.
Least squares solvers may experience difficulty when the residuals at the solution are significant, although experi-
ence has shown that the NL2SOL method can handle some problems that are highly nonlinear and have nonzero
residuals at the solution.

NL2SOL: The NL2SOL algorithm [26] uses a secant-based algorithm to solve least-squares problems. In prac-
tice, it is more robust to nonlinear functions and nonzero residuals than conventional Gauss-Newton algorithms.

Gauss-Newton: DAKOTA’s Gauss-Newton algorithm utilizes the Hessian approximation described in Section 1.4.2.
The exact objective function value, exact objective function gradient, and the approximate objective function Hes-
sian are defined from the least squares term values and gradients and are passed to the full-Newton optimizer from
the OPT++ software package. As for all of the Newton-based optimization algorithms in OPT++, unconstrained,
bound-constrained, and generally-constrained problems are supported. However, for the generally-constrained
case, a derivative order mismatch exists in that the nonlinear interior point full Newton algorithm will require
second-order information for the nonlinear constraints whereas the Gauss-Newton approximation only requires
first order information for the least squares terms.

NLSSOL: The NLSSOL algorithm is a commercial software product of Stanford University (web site: http:
//www.sbsi-sol-optimize.com) that is bundled with current versions of the NPSOL library. It uses an
SQP-based approach to solve generally-constrained nonlinear least squares problems. It periodically employs
the Gauss-Newton Hessian approximation to accelerate the search. It requires only first-order information for
the least squares terms and nonlinear constraints. Sandia National Laboratories, Lawrence Livermore National
Laboratory, and Los Alamos National Laboratory all have site licenses for NLSSOL. Other users may obtain their
own copy of NLSSOL and compile it with the DAKOTA source code by following the NPSOL installation steps
given in the file Dakota/INSTALL.

Additional information on these methods is provided in Chapter 8.

3.8 Surrogate-Based Minimization

Surrogate-Based Local Minimization: This method combines the design of experiments methods, surrogate
models, and optimization capabilities of DAKOTA. In SBO, the optimization algorithm operates on a surrogate
model instead of directly operating on the computationally expensive simulation model. The surrogate model can
be formed from data fitting methods (local, multipoint, or global), from a lower fidelity version of the compu-
tational model, or from a mathematically-generated reduced-order model (see Section 3.10). For each of these
surrogate model types, the SBO algorithm periodically validates the progress using the surrogate model against
the original high-fidelity model. The SBO strategy in DAKOTA can be configured to employ heuristic rules (less
expensive) or to be provably convergent to the optimum of the original model (more expensive). The development
of SBO strategies is an area of active research in the DAKOTA project.

Surrogate-Based Global Minimization: Similar to surrogate-based local minimization, this method combines
design of experiments and surrogate modeling with optimization. However, rather than employing trust region
model management to localize and control the extent of the approximation in order to ensure convergence to a
local minimum, the surrogate-based global method sequentially refines the full range of a global approximation
using global optimizers.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

http://www.sbsi-sol-optimize.com
http://www.sbsi-sol-optimize.com

72 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

Efficient Global Minimization: Methods for nongradient-based constrained and unconstrained optimization and
nonlinear least squares based on Gaussian process models. This approach uses an expected improvement function
derived from the expected value and variance estimators in Gaussian process models, and is designed to balance
exploitation of regions with good solutions and exploration of regions with limited data. [91]

Additional information on these methods is provided in Chapter 9.

3.9 Optimization Strategies

Due to the flexibility of DAKOTA’s object-oriented design, it is relatively easy to create algorithms that combine
several of DAKOTA'’s capabilities. These algorithms are referred to as strategies:

Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of optimization methods,
with the results from one method providing the starting point for the next method in the sequence. An example
which is useful in many engineering design problems involves the use of a nongradient-based global optimization
method (e.g., genetic algorithm) to identify a promising region of the parameter space, which feeds its results into
a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart Local Optimization: This strategy uses many local optimization runs (often gradient-based), each of
which is started from a different initial point in the parameter space. This is an attractive strategy in situations
where multiple local optima are known to exist or may potentially exist in the parameter space. This approach
combines the efficiency of local optimization methods with the parameter space coverage of a global stratification
technique.

Pareto-Set Optimization: The Pareto-set optimization strategy allows the user to specify different sets of weights
for the individual objective functions in a multiobjective optimization problem. DAKOTA executes each of these
weighting sets as a separate optimization problem, serially or in parallel, and then outputs the set of optimal de-
signs which define the Pareto set. Pareto set information can be useful in making trade-off decisions in engineering
design problems. [Refer to 3.6 for additional information on multiobjective optimization methods. |

Mixed Integer Nonlinear Programming (MINLP): This strategy uses the branch and bound capabilities of the
PICO package to perform optimization on problems that have both discrete and continuous design variables. PICO
provides a branch and bound engine targeted at mixed integer linear programs (MILP), which when combined
with DAKOTA’s nonlinear optimization methods, results in a MINLP capability. In addition, the multiple NLPs
solved within MINLP provide an opportunity for concurrent execution of multiple optimizations. For DAKOTA
5.1, branch and bound is currently inoperative due to ongoing restructuring of PICO and its incorporation into
COLINY. This will be supported again in future releases.

These strategies are covered in more detail in Chapter 10.

3.10 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient features of an
expensive high-fidelity model. They can be used to explore the variations in response quantities over regions of the
parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantification studies
(see, for example, the surrogate-based optimization strategy in Section 3.9). The surrogate models supported in
DAKOTA can be categorized into three types: data fits, multifidelity, and reduced-order model surrogates.

Data fitting methods involve construction of an approximation or surrogate model using data (response values,
gradients, and Hessians) generated from the original truth model. Data fit methods can be further categorized as

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

3.10. SURROGATE MODELS 73

local, multipoint, and global approximation techniques, based on the number of points used in generating the data
fit. Local methods involve response data from a single point in parameter space. Available techniques currently
include:

Taylor Series Expansion: This is a local first-order or second-order expansion centered at a single point in the
parameter space.

Multipoint approximations involve response data from two or more points in parameter space, often involving the
current and previous iterates of a minimization algorithm. Available techniques currently include:

TANA-3: This multipoint approximation uses a two-point exponential approximation [165, 50] built with re-
sponse value and gradient information from the current and previous iterates.

Global methods, often referred to as response surface methods, involve many points spread over the parameter
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and design of
experiments methods described in Section 3.3.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic) polynomial re-
sponse surfaces computed using linear least squares regression methods. Note: there is currently no use of
forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial model.

Kriging Interpolation: An implementation of spatial interpolation using kriging methods and Gaussian corre-
lation functions [71]. The algorithm used in the kriging process generates a C2-continuous surface that exactly
interpolates the data values.

Gaussian Process (GP): Closely related to kriging, this technique is a spatial interpolation method that assumes
the outputs of the simulation model follow a multivariate normal distribution. The implementation of a Gaussian
process currently in DAKOTA assumes a constant mean function. The hyperparameters governing the covariance
matrix are obtained through Maximum Likelihood Estimation (MLE). We also use a jitter term to better condition
the covariance matrix, so the Gaussian process may not exactly interpolate the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural network developed
by Prof. D. C. Zimmerman of the University of Houston [166]. This neural network method is intended to have a
lower training (fitting) cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H. Friedman of Stanford
University [55]. The MARS method creates a C’-continuous patchwork of splines in the parameter space.

Radial Basis Functions (RBF): Radial basis functions are functions whose value typically depends on the dis-
tance from a center point, called the centroid. The surrogate model approximation is constructed as the weighted
sum of individual radial basis functions.

Moving Least Squares (MLS): Moving Least Squares can be considered a more specialized version of linear
regression models. MLS is a weighted least squares approach where the weighting is “moved” or recalculated for
every new point where a prediction is desired. [105]

In addition to data fit surrogates, DAKOTA supports multifidelity and reduced-order model approximations:

Multifidelity Surrogates: Multifidelity modeling involves the use of a low-fidelity physics-based model as a
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarsher mesh, looser
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own right and
does not require data from the high-fidelity model for construction. Rather, the primary need for high-fidelity
evaluations is for defining correction functions that are applied to the low-fidelity results.

Reduced Order Models: A reduced-order model (ROM) is mathematically derived from a high-fidelity model
using the technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left singular
vectors) that capture the principal dynamics of a system, the original high-order system can be projected to a much

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

74 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

smaller system, of the size of the number of retained basis functions.

Additional information on these surrogate methods is provided in Sections 11.4.1 through 11.4.3.

3.11 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every eval-
uation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis,
and computes a set of sub-level responses which are passed back up to the outer level. The nested model con-
structs admit a wide variety of multi-iterator, multi-model solution approaches. For example, optimization within
optimization (for hierarchical multidisciplinary optimization), uncertainty quantification within uncertainty quan-
tification (for second-order probability), uncertainty quantification within optimization (for optimization under
uncertainty), and optimization within uncertainty quantification (for uncertainty of optima) are all supported, with
and without surrogate model indirection. Three important examples are highlighted: mixed epistemic-aleatory
uncertainty quantification, optimization under uncertainty, and surrogate-based uncertainty quantification.

Mixed Epistemic-Aleatory Uncertainty Quantification: Mixed uncertainty quantification (UQ) refers to ca-
pabilities for performing UQ calculations on both epistemic uncertainties (also known as reducible uncertainties
resulting from a lack of knowledge) and aleatory uncertainties (also known as irreducible uncertainties that are in-
herent variabilities). Mixed UQ approaches employ nested models to embed one uncertainty quantification within
another. The outer level UQ is commonly linked to epistemic uncertainties, and the inner UQ is commonly linked
to aleatory uncertainties. We have three main approaches: interval-valued probability, second-order probability,
and nested Dempster-Shafer. In interval-valued probability, the outer level generates sets of realizations, typically
from sampling within interval distributions. These realizations define values for the epistemic variables used in
a probabilistic analysis for the inner level UQ (e.g. which may involve sampling over aleatory variables). In
interval-valued probability, we generate intervals on statistics from the inner loop. In second-order probability,
the outer level also generates sets of realizations, from sampling from distributions on the epistemic variables.
These outer loop values then define values for distribution parameters used in the inner level UQ. The term
“second-order” derives from this use of distributions on distributions and the generation of statistics on statistics.
DAKOTA includes capability to use interval analysis to perform the outer loop calculations (e.g. find intervals on
inner loop statistics). Interval analysis can use efficient optimization methods to obtain interval bound estimates.
Nested Dempster-Shafer refers to using Dempster-Shafer evidence theory on the outer loop, and an aleatory UQ
method such as sampling or stochastic expansions on the inner loop. Evidence theory results in measures of belief
and plausbility, so in a nested context, this produces belief and plausibility bounds on inner loop statistics. More
on mixed UQ approaches can be found in [47] and [48].

Optimization Under Uncertainty (OUU): Many real-world engineering design problems contain stochastic fea-
tures and must be treated using OUU methods such as robust design and reliability-based design. For OUU,
the uncertainty quantification methods of DAKOTA are combined with optimization algorithms. This allows
the user to formulate problems where one or more of the objective and constraints are stochastic. Due to the
computational expense of both optimization and UQ, the simple nesting of these methods in OUU can be com-
putationally prohibitive for real-world design problems. For this reason, surrogate-based optimization under un-
certainty (SBOUU), reliability-based design optimization (RBDO), polynomial chaos-based design optimization
(PCBDO), and stochastic collocation-based design optimization (SCBDO) methods have been developed which
can reduce the overall expense by orders of magnitude. OUU methods are an active research area.

Surrogate-Based Uncertainty Quantification (SBUQ): Since many uncertainty quantification (UQ) methods are
computationally costly, requiring many function evaluations to obtain accurate estimates of moments or percentile
values of an output distribution, one may wish to embed surrogate models within the UQ process in order to reduce
expense. By evaluating the true function on a fixed, small set of samples and using these sample evaluations to

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

3.12. PARALLEL COMPUTING 75

create a response surface approximation (e.g. a surrogate model or meta-model) of the underlying “true” function,
the subsequent evaluation of the UQ results (using thousands or millions of samples) based on the approximation
can obtain estimates of the mean, variance, and percentiles of the response at much lower overall cost.

Additional information on these nested approaches is provided in Sections 11.5-11.6.

3.12 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources such as those found
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing platform.
This parallel computing capability is a critical technology for rendering real-world engineering design problems
computationally tractable. DAKOTA employs the concept of multilevel parallelism, which takes simultaneous
advantage of opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel simulation codes.

Concurrent Execution of Analyses within a Function Evaluation: Some engineering design applications call
for the use of multiple simulation code executions (different disciplinary codes, the same code for different load
cases or environments, etc.) in order to evaluate a single response data set (e.g., abjective functions and con-
straints) for a single set of parameters. If these simulation code executions are independent (or if coupling is
enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator: With very few exceptions, the iterative
algorithms described in Section 3.2 through Section 3.7 all provide opportunities for the concurrent evaluation of
response data sets for different parameter sets. Whenever there exists a set of design point evaluations that are
independent, DAKOTA can perform them in parallel.

Concurrent Execution of Iterators within a Strategy: Some of the DAKOTA strategies described in Section 3.9
generate a sequence of iterator subproblems. For example, the MINLP, Pareto-set, and multi-start strategies gener-
ate sets of optimization subproblems, and the optimization under uncertainty strategy generates sets of uncertainty
quantification subproblems. Whenever these subproblems are independent, DAKOTA can perform them in paral-
lel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can schedule and
manage concurrent iterators, each of which may manage concurrent function evaluations, each of which may
manage concurrent analyses, each of which may execute on multiple processors. Additional information on
parallel computing with DAKOTA is provided in Chapter 18.

3.13 Summary

DAKOTA is both a production tool for engineering design and analysis activities and a research tool for the devel-
opment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible,
object-oriented design of DAKOTA, it is relatively easy to add new iterative algorithms, strategies, simulation in-
terfacing approaches, surface fitting methods, etc. In addition, DAKOTA can serve as a rapid prototyping tool for
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel computing,
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly
which leverage the previous software investments. For additional discussion on framework extensibility, refer to
the DAKOTA Developers Manual [4].

The capabilities of DAKOTA have been used to solve engineering design and optimization problems at Sandia

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

76 CHAPTER 3. DAKOTA CAPABILITY OVERVIEW

Labs, at other Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world
experience has provided motivation for research into new areas of optimization. The DAKOTA development team
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of research.

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Chapter 4

Parameter Study Capabilities

4.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selection
of points in the parameter space. These response data sets are not linked to any specific interpretation, so they
may consist of any allowable specification from the responses keyword block, i.e., objective and constraint func-
tions, least squares terms and constraints, or generic response functions. This allows the use of parameter studies
in direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. In addition, response data sets are not restricted to function values only; gradients
and Hessians of the response functions can also be catalogued by the parameter study. This allows for several
different approaches to “sensitivity analysis™: (1) the variation of function values over parameter ranges provides
a global assessment as to the sensitivity of the functions to the parameters, (2) derivative information can be com-
puted numerically, provided analytically by the simulator, or both (mixed gradients) in directly determining local
sensitivity information at a point in parameter space, and (3) the global and local assessments can be combined to
investigate the variation of derivative quantities through the parameter space by computing sensitivity information
at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmoothness in
simulation response variations (so that models can be refined or finite difference step sizes can be selected for
computing numerical gradients), interrogating problem areas in the parameter space, or performing simulation
code verification (verifying simulation robustness) through parameter ranges of interest. A parameter study can
also be used in coordination with minimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of design, uncertain, and state variables defined over con-
tinuous and discrete domains into any set of responses (any function, gradient, and Hessian definition). Parameter
studies draw no distinction among the different types of continuous variables (design, uncertain, or state) or
among the different types of response functions. They simply pass all of the variables defined in the variables
specification into the interface, from which they expect to retrieve all of the responses defined in the responses
specification. As described in Section 14.3, when gradient and/or Hessian information is being catalogued in the
parameter study, it is assumed that derivative components will be computed with respect to all of the continuous
variables (continuous design, continuous uncertain, and continuous state variables) specified, since derivatives
with respect to discrete variables are assumed to be undefined.

DAKOTA currently supports four types of parameter studies. Vector parameter studies compute response data

78 CHAPTER 4. PARAMETER STUDY CAPABILITIES

sets at selected intervals along an n-dimensional vector in parameter space. List parameter studies compute
response data sets at a list of points in parameter space, defined by the user. A centered parameter study computes
multiple coordinate-based parameter studies, one per parameter, centered about the initial parameter values. A
multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points. More
detail on these parameter studies is found in Sections 4.2 through 4.5 below.

4.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the variables keyword
block as the starting point and the central point of the parameter studies, respectively. In the case of design vari-
ables, the initial_point is used, and in the case of state variables, the initial_state is used (see the
DAKOTA Reference Manual [3] for default values when initial _point or initial_state are unspeci-
fied). In the case of uncertain variables, initial values are inferred from the distribution specification: all uncertain
initial values are set to their means, where mean values for bounded normal and bounded lognormal are repaired
of needed to satisfy the specified distribution bounds, mean values for discrete integer range distributions are
rounded down to the nearest integer, and mean values for discrete set distributions are rounded to the nearest
set value. These parameter study starting values for design, uncertain, and state variables are referenced in the
following sections using the identifier “Initial Values.”

4.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables from the variables keyword block
to define the range of parameter values to study. In the case of design and state variables, the lower_bounds
and upper_bounds specifications are used (see the DAKOTA Reference Manual [3] for default values when
lower_bounds or upper_bounds are unspecified). In the case of uncertain variables, these values are either
drawn or inferred from the distribution specification. Distribution lower and upper bounds can be drawn directly
from required bounds specifications for uniform, loguniform, triangular, and beta distributions, as well as from
optional bounds specifications for normal and lognormal. Distribution bounds are implicitly defined for histogram
bin, histogram point, and interval variables (from the extreme values within the bin/point/interval specifications)
as well as for binomial (0 to num_trials) and hypergeometric (0 to min(num-drawn,num_selected)) vari-
ables. Finally, distribution bounds are inferred for normal and lognormal if optional bounds are unspecified, as
well as for exponential, gamma, gumbel, frechet, weibull, poisson, negative binomial, and geometric (which have
no bounds specifications); these bounds are [0, 4+ 3c] for exponential, gamma, frechet, weibull, poisson, negative
binomial, geometric, and unspecified lognormal, and [¢t — 30, p + 3] for gumbel and unspecified normal.

4.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along an n-dimensional vector in
parameter space. This capability encompasses both single-coordinate parameter studies (to study the effect of
a single variable on a response set) as well as multiple coordinate vector studies (to investigate the response
variations along some arbitrary vector; e.g., to investigate a search direction failure).

DAKOTA’s vector parameter study includes two possible specification formulations which are used in conjunction
with the Initial Values (see Section 4.1.1) to define the vector and steps of the parameter study:

final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

4.2. VECTOR PARAMETER STUDY 79

In both of these cases, the Initial Values are used as the parameter study starting point and the specification
selection above defines the orientation of the vector and the increments to be evaluated along the vector. In
the former case, the vector from initial to final point is partitioned by num_steps, and in the latter case, the
step_vector is added num_steps times. In the case of discrete range variables, both final _point and
step_vector are specified in the actual values; and in the case of discrete sets (integer or real), final_point
is specified in the actual values but step_vector must instead specify index offsets for the (ordered, unique)
set. In all cases, the number of evaluations is num_steps+1. Two examples are included below:

Three continuous parameters with initial values of (1.0, 1.0, 1.0), num_steps =4, and either final_point =
(1.0,2.0,1.0) or step_vector = (0, .25, 0):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 2:
1.0000000000e+00 c1
1.2500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 3:
1.0000000000e+00 c1
1.5000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 4:
1.0000000000e+00 c1
1.7500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 5:
1.0000000000e+00 c1
2.0000000000e+00 c2
1.0000000000e+00 c3

Two continuous parameters with initial values of (1.0, 1.0), one discrete range parameter with initial value of 5,
one discrete real set parameter with set values of (10., 12., 18., 30., 50.) and initial value of 10., num_steps =4,
and either final _point = (2.0, 1.4, 13, 50.) or step_vector =(.25, .1, 2, 1):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2

5 di1l
1.0000000000e+01 drl

Parameters for function evaluation 2:
1.2500000000e+00 c1
1.1000000000e+00 c2

7 dil
1.2000000000e+01 dril

Parameters for function evaluation 3:
1.5000000000e+00 c1
1.2000000000e+00 c2

9 di1l
1.8000000000e+01 drl

Parameters for function evaluation 4:
1.7500000000e+00 c1
1.3000000000e+00 c2

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

80 CHAPTER 4. PARAMETER STUDY CAPABILITIES

11 di1l
3.0000000000e+01 drl
Parameters for function evaluation 5:
2.0000000000e+00 c1
1.4000000000e+00 c2
13 di1l
5.0000000000e+01 drl

4.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points are
explicitly specified by the user and are not confined to lie on any line or surface. Thus, this parameter study
provides a general facility that supports the case where the desired set of points to evaluate does not fit the
prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists of a 1ist_of_points specification which lists the requested parameter sets in succes-
sion. The list parameter study simply performs a simulation for the first parameter set (the first n entries in the
list), followed by a simulation for the next parameter set (the next n entries), and so on, until the list of points has
been exhausted. Since the Initial Values will not be used, they need not be specified. In the case of discrete range
or discrete set variables, list values are specified using the actual values (not set indices).

An example specification that would result in the same parameter sets as in the second example in Section 4.2
would be:

list_of_points = 1.0 1.0 5 10.
1.25 1.1 7 12.
1.5 1.2 9 18.
1.75 1.3 11 30.
2.0 1.4 13 50.

4.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter, centered
about the specified Initial Values. This is useful for investigation of function contours in the vicinity of a specific
point. For example, after computing an optimum design, this capability could be used for post-optimality analysis
in verifying that the computed solution is actually at a minimum or constraint boundary and in investigating the
shape of this minimum or constraint boundary.

This method requires step_vector (list of reals) and steps_per_variable (list of integers) specifications,
where the former specifies the size of the increments per variable (employed sequentially, not all at once as
for the vector study in Section 4.2) and the latter specifies the number of increments per variable (employed
sequentially, not all at once) for each of the positive and negative step directions. As for the vector study described
in Section 4.2, step_vector includes actual variable steps for continuous and discrete range variables, but
employs index offsets for discrete set variables (integer or real).

For example, with Initial Values of (1.0, 1.0), a step_vector of (0.1, 0.1), and a steps_per_variable of
(2, 2), the center point is evaluated followed by four function evaluations (two negative deltas and two positive
deltas) per variable:

Parameters for function evaluation 1:

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

4.4. CENTERED PARAMETER STUDY

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

This set of points in parameter space is depicted in Figure 4.1.

for

for

for

for

for

for

for

for

d2

= dl

Figure 4.1: Example centered parameter study.

1.
1.

function

8.
1.

function

9.
.0000000000e+00

1
function

1.
1.

function

1.
1.

function

1.
8.

function

1.
9.

function

1.
1.

function

1.
.2000000000e+00

1

0000000000e+00
0000000000e+00
evaluation 2:

0000000000e-01
0000000000e+00
evaluation 3:

0000000000e-01

evaluation 4:
1000000000e+00
0000000000e+00
evaluation 5:
2000000000e+00
0000000000e+00
evaluation 6:
0000000000e+00
0000000000e-01
evaluation 7:
0000000000e+00
0000000000e-01
evaluation 8:
0000000000e+00
1000000000e+00
evaluation 9:
0000000000e+00

dl
d2

dl
d2

dl
d2

dl
d2

dl
d2

dl
d2

dl
d2

dl
d2

dl
d2

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

82 CHAPTER 4. PARAMETER STUDY CAPABILITIES

d2

w
®
@

3 partitions

0® @ *—» (]
1 2

2 partitions
Figure 4.2: Example multidimensional parameter study

4.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points.
Each variable is partitioned into equally spaced intervals between its upper and lower bounds (see Section 4.1.2),
and each combination of the values defined by these partitions is evaluated. As for the vector and centered studies
described in Sections 4.2 and 4.4, partitioning occurs using the actual variable values for continuous and discrete
range variables, but occurs within the space of valid indices for discrete set variables (integer or real). The number
of function evaluations performed in the study is:
n
H(partitionsi +1) 4.1
i=1

The partitions information is specified using the part it ions specification, which provides an integer list of the
number of partitions for each variable (i.e., partitions;). Since the Initial Values will not be used, they need
not be specified.

In a two variable example problem with d1 € [0,2] and d2 € [0,3] (as defined by the upper and lower bounds
from the variables specification) and with partitions =(2,3), the interval [0,2] is divided into two equal-sized
partitions and the interval [0,3] is divided into three equal-sized partitions. This two-dimensional grid, shown in
Figure 4.2, would result in the following twelve function evaluations:

Parameters for function evaluation 1:

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

4.5. MULTIDIMENSIONAL PARAMETER STUDY

83

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

for

for

for

for

for

for

for

for

for

for

for

0.
0.

function
1

function

2.
0.

function

0.
1.

function
1

function

2.

1
function

0.
2.

function
1

function

2.
2.

function

0.
3.

function
1

function

2.
3.

0000000000e+00
0000000000e+00
evaluation 2:

.0000000000e+00
0.

0000000000e+00
evaluation 3:
0000000000e+00
0000000000e+00
evaluation 4:
0000000000e+00
0000000000e+00
evaluation 5:

.0000000000e+00
1.

0000000000e+00
evaluation 6:
0000000000e+00

.0000000000e+00

evaluation 7:
0000000000e+00
0000000000e+00
evaluation 8:

.0000000000e+00
2.

0000000000e+00
evaluation 9:

0000000000e+00
0000000000e+00
evaluation 10:
0000000000e+00
0000000000e+00
evaluation 11:

.0000000000e+00
3.

0000000000e+00
evaluation 12:
0000000000e+00
0000000000e+00

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
dz2

dl
d2

dl
d2

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

84

CHAPTER 4. PARAMETER STUDY CAPABILITIES

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

Chapter 5

Design of Experiments Capabilities

5.1 Overview

DAKOTA contains several software packages for sampling and design of experiments: LHS (Latin hypercube
sampling), DDACE (distributed design and analysis for computer experiments), FSUDace (Florida State Univer-
sity’s Design and Analysis of Computer Experiments package), and PSUADE (Problem Solving Environment
for Uncertainty Analysis and Design Exploration). LHS [138] is a general-purpose sampling package developed
at Sandia that has been used by the DOE national labs for several decades. DDACE is a more recent pack-
age for computer experiments that is under development by staff at Sandia Labs [143]. DDACE provides the
capability for generating orthogonal arrays, Box-Behnken designs, Central Composite designs, and random de-
signs. The FSUDace package provides the following sampling techniques: quasi-Monte Carlo sampling based
on Halton or Hammersley sequences, and Centroidal Voronoi Tessellation. Lawrence Livermore National Lab’s
PSUADE [142] includes several methods for model exploration, but only the Morris screening method is exposed
in DAKOTA.

This chapter describes DDACE, FSUDace, and PSUADE, with the primary goal of designing computer exper-
iments. Latin Hypercube Sampling, also used in uncertainty quantification, is discussed in Section 6.2. The
differences between sampling used in design of experiments and sampling used in uncertainty quantification is
discussed in more detail in the following paragraphs. In brief, we consider design of experiment methods to gen-
erate sets of uniform random variables on the interval [0, 1]. These sets are mapped to the lower/upper bounds
of the problem variables and then the response functions are evaluated at the sample input points with the goal
of characterizing the behavior of the response functions over the input parameter ranges of interest. Uncertainty
quantification via LHS sampling, in contrast, involves characterizing the uncertain input variables with probabil-
ity distributions such as normal, Weibull, triangular, etc., sampling from the input distributions, and propagating
the input uncertainties to obtain a cumulative distribution function on the output. There is significant overlap
between design of experiments and sampling. Often, both techniques can be used to obtain similar results about
the behavior of the response functions and about the relative importance of the input variables.

5.2 Design of Computer Experiments

Computer experiments are often different from physical experiments, such as those performed in agriculture,
manufacturing, or biology. In physical experiments, one often applies the same treatment or factor level in an

86 CHAPTER 5. DESIGN OF EXPERIMENTS CAPABILITIES

experiment several times to get an understanding of the variability of the output when that treatment is applied.
For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a low level of fertilizer and the
same number of fields may be subject to a high level of fertilizer to see if the amount of fertilizer has a significant
effect on crop output. In addition, one is often interested in the variability of the output within a treatment group:
is the variability of the crop yields in the low fertilizer group much higher than that in the high fertilizer group, or
not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment may result
in different outcomes. By contrast, in computer experiments, often we have a deterministic code. If we run the
code with a particular set of input parameters, the code will always produce the same output. There certainly
are stochastic codes, but the main focus of computer experimentation has been on deterministic codes. Thus, in
computer experiments we often do not have the need to do replicates (running the code with the exact same input
parameters several times to see differences in outputs). Instead, a major concern in computer experiments is to
create an experimental design which can sample a high-dimensional space in a representative way with a minimum
number of samples. The number of factors or parameters that we wish to explore in computer experiments is
usually much higher than physical experiments. In physical experiments, one may be interested in varying a few
parameters, usually five or less, while in computer experiments we often have dozens of parameters of interest.
Choosing the levels of these parameters so that the samples adequately explore the input space is a challenging
problem. There are many experimental designs and sampling methods which address the issue of adequate and
representative sample selection. Classical experimental designs which are often used in physical experiments
include Central Composite designs and Box-Behnken designs.

There are many goals of running a computer experiment: one may want to explore the input domain or the design
space and get a better understanding of the range in the outputs for a particular domain. Another objective is to
determine which inputs have the most influence on the output, or how changes in the inputs change the output.
This is usually called sensitivity analysis. Another goal is to compare the relative importance of model input
uncertainties on the uncertainty in the model outputs, uncertainty analysis. Yet another goal is to use the sampled
input points and their corresponding output to create a response surface approximation for the computer code.
The response surface approximation (e.g., a polynomial regression model, a kriging model, a neural net) can then
be used to emulate the computer code. Constructing a response surface approximation is particularly important
for applications where running a computational model is extremely expensive: the computer model may take 10
or 20 hours to run on a high performance machine, whereas the response surface model may only take a few
seconds. Thus, one often optimizes the response surface model or uses it within a framework such as surrogate-
based optimization. Response surface models are also valuable in cases where the gradient (first derivative) and/or
Hessian (second derivative) information required by optimization techniques are either not available, expensive
to compute, or inaccurate because the derivatives are poorly approximated or the function evaluation is itself
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to ensure
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Under these
circumstances, a good design of computer experiment framework coupled with response surface approximations
can offer great advantages.

In addition to the sensitivity analysis, uncertainty analysis, and response surface modeling mentioned above, we
also may want to do uncertainty quantification on a computer model. Uncertainty quantification (UQ) refers
to taking a particular set of distributions on the inputs, and propagating them through the model to obtain a
distribution on the outputs. For example, if input parameter A follows a normal with mean 5 and variance 1, the
computer produces a random draw from that distribution. If input parameter B follows a weibull distribution with
alpha = 0.5 and beta = 1, the computer produces a random draw from that distribution. When all of the uncertain
variables have samples drawn from their input distributions, we run the model with the sampled values as inputs.
We do this repeatedly to build up a distribution of outputs. We can then use the cumulative distribution function
of the output to ask questions such as: what is the probability that the output is greater than 10? What is the 99th
percentile of the output?

DAKOTA Version 5.1 User’s Manual generated on January 21, 2011

5.3. DDACE BACKGROUND 87

Note that sampling-based uncertainty quantification and design of computer experiments are very similar. There
is significant overlap in the purpose and methods used for UQ and for DACE. We have attempted to delineate
the differences within DAKOTA as follows: we use the methods DDACE, FSUDACE, and PSUADE primarily
for design of experiments, where we are interested in understanding the main effects of parameters and where we
want to sample over an input domain to obtain values for constructing a response surface. We use the nondeter-
ministic sampling methods (sampling) for uncertainty quantification, where we are propagating specific input
distributions and interested in obtaining (for example) a cumulative distribution function on the output. If one
has a problem with no distributional information, we recommend starting with a design of experiments approach.
Note that DDACE, FSUDACE, and PSUADE currently do not support distributional information: they take an
upper and lower bound for each uncertain input variable and sample within that. The uncertainty quantification
methods in sampling (primarily Latin Hypercube sampling) offer the capability to sample from many distri-
butional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches often can yield
insight about important parameters and both can determine sample points for response surface approximations.

5.3 DDACE Background

The DACE package includes both classical design of experiments methods [143] and stochastic sampling meth-
ods. The classical design of experiments methods in DDACE are central composite design (CCD) and Box-
Behnken (BB) sampling. A grid-based sampling method also is available. The stochastic methods are orthogonal
array sampling [94], Monte Carlo (random) sampling, and Latin hypercube sampling. Note that the DDACE
version of LHS available through the DAKOTA interface only supports uniform distributions. DDACE does not
currently support enforcement of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example, DDACE
sampling can be used with both the surrogate-based optimization strategy and the optimization under uncertainty
strategy. See Figure 11.5 for an example of how the DDACE settings are used in DAKOTA.

More information on DDACE is available on the web at: http://csmr.ca.sandia.gov/projects/
ddace

The following sections provide more detail about the sampling methods available for design of experiments in
DDACE.

5.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains an em-
bedded factorial or fractional factorial design with center points that is augmented wi